Hurkolt UDP és QUIC alapú szállítási réteg-mechanizmusok forgalmi tulajdonságai
Traffic properties of looped UDP and QUIC-based transport layer mechanisms
Keywords:
datagram, high-speed network, TCP, UDP, QUIC, /, datagram, nagysebességű hálózat, TCP, UDP, QUIC, klaszter, OPTICS algoritmus.Abstract
The study examines the operation and performance differences of TCP, UDP and QUIC protocols in the modern network environment. TCP provides reliable, connection-oriented communication, but latency and head-of-line blocking can hamper performance. UDP is faster but less reliable, while QUIC uses UDP to address TCP's limitations, reduce latency, support multiplexing, and connection migration between networks. This research summary analyzes the effectiveness of QUIC and UDP in a real network environment, paying particular attention to data flow control and traffic periodicity. In a real data traffic environment, in the case of different combinations of environmental parameters (garden size, segment size, transmission rate), a 10 MB file was copied between nodes using the UDP and QUIC protocols. In addition to the new delivery capabilities of the QUIC mechanism, we present the special characteristics of the periodicity of the arrival intervals of the regulated UDP traffic of the data stream.
Kivonat
A tanulmány a TCP, UDP és QUIC protokollok működését és teljesítménybeli különbségeit vizsgálja a modern hálózati környezetben. A TCP megbízható, kapcsolatorientált kommunikációt biztosít, ám a késleltetés és a "head-of-line" blokkolás hátráltathatja a teljesítményt. Az UDP gyorsabb, de kevésbé megbízható, míg a QUIC az UDP-t használva jól kezeli a TCP korlátait, csökkenti a késleltetést, támogatja a multiplexelést és a hálózatok közötti kapcsolat-migrációt. Jelen kutatási összefoglaló elemzi a QUIC és az UDP hatékonyságát valós hálózati környezetben, különös figyelmet fordítva az adatfolyam szabályozásra és a forgalom periodicitására. Valós adatforgalmi környezetben különböző környezeti paraméter (kertméret, szegmensméret, átviteli ráta) kombinációk esetén egy 10 MB méretű állomány ismételt átmásolása történt meg UDP, illetve QUIC protokollt alkalmazó csomópontok között. A QUIC mechanizmus új szállítási képességei mellett az adatfolyam szabályozott UDP forgalom beérkezési időközei periodicitásának speciális jellemzőit mutatjuk be.
References
J. Iyengar, M. Thomson: QUIC: A UDP-Based Multiplexed and Secure Transport, Request for Comments, RFC Editor (2021), pp. 1-151, doi: 10.17487/RFC9000.
M. B. Abd-el-Malek, S. S. Hanna: Using filter bank property to simplify the calculations of Empirical Mode Decomposition, Communications in Nonlinear Science and Numerical Simulation 62 (2018), pp. 429–444, issn: 1007-5704, doi: https://doi.org/10.1016/j.cnsns.2018.02.035.
R. Bazi, T. Benkedjouh, H. Habbouche, S. Rechak, N. Zerhouni: A hybrid CNNBiLSTM approach-based variational mode decomposition for tool wear monitoring, The International Journal of Advanced Manufacturing Technology 5 (2022), pp. 3803–3817, doi: 10.1007/s00170-021-08448-7.
P. Bloomfield: Fourier analysis of time series: an introduction, John Wiley & Sons, 2004.
F. T. AL-Dhief, N. Sabri, N. A. Latiff, M. Abbas, A. Albader, M. A. Mohammed, R. N. AL-Haddad, Y. D. Salman, M. Khanapi, et al.: Performance comparison between TCP and UDP protocols in different simulation scenarios, International Journal of Engineering & Technology 7.4.36 (2018), pp. 172–176.
K. Dragomiretskiy, D. Zosso: Variational Mode Decomposition, IEEE Transactions on Signal Processing 62.3 (2014), pp. 531–544, doi: 10.1109/TSP.2013.2288675.
B. Eckart, X. He, Q. Wu: Performance adaptive UDP for high-speed bulk data transfer over dedicated links, in: 2008 IEEE International Symposium on Parallel and Distributed Processing, IEEE, 2008, pp. 1–10.
Fast transport layer protocol: QUIC, Official web site of IETF QUIC Working Group, url: https://quicwg.org/.
P. Flandrin, G. Rilling, P. Goncalves: Empirical mode decomposition as a filter bank, IEEE Signal Processing Letters 11.2 (2004), pp. 112–114, doi: 10.1109/LSP.2003.821662.
Z. Gál, G. Kocsis, T. Tajti, R. Tornai: Performance evaluation of massively parallel and high speed connectionless vs. connection oriented communication sessions, Advances in Engineering Software 157-158 (2021), p. 103010, issn: 0965-9978, doi: https://doi.org/10.1016/j.advengsoft.2021.103010.
S. Garg, M. Kappes: An experimental study of throughput for UDP and VoIP traffic in IEEE 802.11 b networks, in: 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003. Vol. 3, IEEE, 2003, pp. 1748–1753.
J. Gilles: Empirical Wavelet Transform, IEEE Transactions on Signal Processing 61.16 (2013), pp. 3999–4010, doi: 10.1109/TSP.2013.2265222.
D. Griffin, J. Lim: Signal estimation from modified short-time Fourier transform, IEEE Transactions on Acoustics, Speech, and Signal Processing 32.2 (1984), pp. 236–243, doi: 10.1109/TASSP.1984.1164317.
Y. Gu, R. L. Grossman: UDT: UDP-based data transfer for high-speed wide area networks, Computer Networks 51.7 (2007), pp. 1777–1799.
E. He, J. Leigh, O. Yu, T. A. DeFanti: Reliable blast UDP: Predictable high performance bulk data transfer, in: Proceedings. IEEE International Conference on Cluster Computing, IEEE, 2002, pp. 317–324.
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, H. H. Liu: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences 454.1971 (1998), pp. 903–995.
H. K. Rath, A. Karandikar: Performance analysis of TCP and UDP-based applications in a IEEE 802.16 deployed network, in: 2011 The 14th International Symposium on Wireless Personal Multimedia Communications (WPMC), 2011, pp. 1–5.
G. Rilling, P. Flandrin: One or Two Frequencies? The Empirical Mode Decomposition Answers, IEEE Transactions on Signal Processing 56.1 (2008), pp. 85–95, doi: 10.1109/TSP.2007.906771.
R. C. Sharpley, V. Vatchev: Analysis of the Intrinsic Mode Functions, Constructive Approximation 24 (2006), pp. 17–47, doi: 10.1007/s00365-005-0603-z.
M. Soni, B. S. Rajput: Security and performance evaluations of QUIC protocol, in: Data Science and Intelligent Applications: Proceedings of ICDSIA 2020, Springer, 2021, pp. 457–462.
Y. Yang, J. Deng, D. Kang: An improved empirical mode decomposition by using dyadic masking signals, Signal, Image and Video Processing 9.6 (2015), pp. 1259–1263, issn: 1863-1711, doi: 10.1007/s11760-013-0566-7.
Z. Gal, Gy. Terdik: On the patterns of the nonstationary datagram based fast communication processes, Annales Mathematicae et Informaticae, Vol. 58 (2023), pp. 1–15, issn: 1787-6117, doi: 10.33039/ami.2023.08.001.