Ipari mikrobiológiai folyamatok fajlagos energia fogyasztása – a takarékos energiafelhasználás járható utjai
Specific energy consumption of industrial microbiological processes – feasible ways of economical energy use
Keywords:
biotechnology, energy consumption, biostimulation, ELF, wastewater treatment, algal production, biotechnológia, energiafogyasztás, biostimuláció, szennyvízkezelés, algatermesztésAbstract
Given the wide application of microbiological processes, we analyzed the possibilities of reducing their specific energy consumption. A new, original technical solution has been developed, according to which the metabolism, growth and reproduction of the microorganisms are significantly accelerated as a result of a ELF electric field. The comparative measurement on the experimental equipment showed, that with the developed solution, under industrial conditions, the specific energy consumption of the microbiological processes is approximately halved.
Kivonat
Tekintettel a mikrobiológiai folyamatok széles körű alkalmazására, elemeztük ezek fajlagos energia-fogyasztásának csökkentési lehetőségeit. Új, eredeti műszaki megoldást lett kidolgozva mely szerint az ELF elektromos tér hatására a mikroorganizmusok metabolizmusa, növekedése és szaporodása számottevően felgyorsul. A kísérleti berendezésen végzett komparatív mérések kimutatták, hogy a kidolgozott megoldással, ipari körülmények között a mikrobiológiai folyamatok fajlagos energiafogyasztása kb. felére csökken.
References
Pascu D.E., Modrogan C., Miron A.R., Albu P.C., Clej D.D., Pascu (Neagu) M., Caprarescu S., Use of Mathematical Modelling in Water and Wastewater Area, Rev. de Chim. (Bucuresti), 2015. 66 (12), 1950-1955.
Nwankwegu A.S., Zhang L. , Xie D.T., Onwosi C.O., Muhammad W.I., Odoh C.K., Sam K., Idenyi J.N., Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects, Journal of Environmental Management, 2022. 304, 114313, https://doi.org/10.1016/j.jenvman.2021.114313
Gherman V. D., Molnar P., Motoc M., Negrea A., Pretreatments testing of high biodiversity inocula with simultaneous biohydrogen production and wastewater treatment, Rev. Chim., 2018. 69 (4), 806-808.
Lingvay M., Caramitu A. R., Borș A. M., I. Lingvay, Dielectric spectroscopic evaluation in the extremely low frequency range of an Aspergillus niger culture, Studia UBB Chemia , 2013. 64 (2 Tom 1), 279-288.
Stancu C., Lingvay M., Szatmari I., Lingvay I., Influence of 50 Hz electromagnetic field on the yeast (Saccharomyces cerevisiae) metabolism, The 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), IEEE Xplore, Bucharest, 2013. DOI: 10.1109/ATEE.2013.6563449
Sandu D., Lingvay I., Lányi S., Micu D. D., & al., The effect of electromagnetic fields on baker's yeast population dynamics, biocatalytic activity and selectivity, Studia UBB Chemia, 2009. 54 (4), pp. 195-201.
Lingvay M., Stancu C., Szatmári I., Lingvay I., The influence of 50 Hz electric field to dielectric permittivity of yeast (Saccharomyces cerevisiae) suspensions, Electroteh., Electronica, Automatica (EEA), 2013. 61 (1), 43-47.
Ferencz C. M., Petrovszki P., Dér A., Sebők-Nagy K., Kóta Z., Páli T., Oscillating electric field measures the rotation rate in a native Rotary enzyme, 2017. Sci. Rep., 7 (45309).
Bartha C., Caramitu A. R., Jipa M., Ignat D. M., Tókos A., Dielectric behavior of sludge from wastewater treatment, Studia UBB Chemia, 2020. 65 (4), 85-93.
Bartha C., Jipa M., Caramitu A.R., Voina A., Tókos A., Circiumaru G., Micu D.D., Lingvay I., Behavior of Microorganisms from Wastewater Treatments in Extremely Low-Frequency Electric Field, Biointerface Resarch in Applied Chemistry, 2021. 12 (4), 5071 – 5080.
Tókos A., Bartha C., Jipa M., Micu D.D, Caramitu A.R., Lingvay I., Interactions of Extremely Low-Frequency Electric Field with the Active Sludge Live Materia from Wastewater Treatments, 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 2021, DOI: 10.1109/ATEE52255.2021.9425187.
Radu E., Lipcinski D., Tănase N., Lingvay I., The influence of the 50 Hz electric field on the development and maturation of Aspergillus niger, Electrotehnica , Electronica, Automatica (EEA), 2015. 63 (3), 68-74.
Yapicioğlu P. S., Energy cost estimation for a dairy wastewater treatment plant in terms of organic load, Academic Perspective Procedia, 2019. 2 (3), 859-864.
Tókos A., Bartha C., Micu D. D., Jipa M., Nascu I., Lingvay I., Energy Consumption in Wastewater Treatment Plants, 9th Int. Conf. on Modern Power Systems, IEEEXplore, 2021, Doi: 10.1109/MPS52805.2021.9492616
Torregrossa D., Leopold U., Hernández Sancho F., Hansen J., Machine learning for energy cost modelling in wastewater treatment plants, J. Environ. Manage, 2018. 223, 1061-1067,
Bartha C., Jipa M., Ignat D. M., Tókos A., Lingvay I., The energy efficiency of domestic wastewater treatment processes: case analysis, Electroteh. Electron. Autom, 2020. 68 (4), 30-36.
Castellet Viciano & al., The relevance of the design characteristics to the optimal operation of wastewater treatment plants: energy cost assessment, J. Environ. Manage, 2018. 222, 275-283.
Tókos A., Micu D.D., Caramitu A.R., Nascu I., Bartha C., Jipa M., Marin D., Lingvay I., Long-term Energy Analysis of a Wastewater Treatment Plant with Biogas Production - Case Analysis, 9th International Conference on Modern Power Systems (MPS), IEEEXplore 2021, Doi: 10.1109/MPS52805.2021.9492535 .
Shen Y., Linville J. L., Urgun Demirtas M., Mintz M. M., Snyder S. W., An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: challenges and opportunities towards energy-neutral WWTPs, Renew. Sust. Energ. Rev, 2015. 50, 346-362.
Bumbac C., Manea E., Banciu A., Stoica C., Ionescu I., Badescu V., Nita-Lazar M., Identification of physical, morphological and chemical particularities of mixed microalgae- bacteria granules, Rev. Chim., 2019. 70 (1), 275-277.
Lingvay I., Radu E, Caramitu A. R., Mitrea S., Oprina G., Voina A., Procedeu pentru determinarea frecventelor reprezentative in comportarea celulelor microbiene si algale, OSIM Nr. A/00091/09.02.2016. - RO-BOPI 8/2017
Bartha C., Tókos A., Caramitu A.R., Voina A, Jipa M., Vlad G., Lingvay I., Procedeu de stimulare a nămolului biologic și bioreactor pentru epurarea biologică a apelor reziduale, OSIM nr. 0087/08.12.2020.
Tókos A., Jipa M., Círciumaru G., Bartha C., Voina A., Caramitu A.R., Micu D.D., Lingvay I., Contributions to Energy Saving in Wastewater Treatment Plants, 2022 International Conf. on Electrical, Computer and Energy Technologies (ICECET), Prague, Czech Republic, 20-22 July 2022, DOI: 10.1109/ICECET55527.2022.9872736
Bartha C., Marinescu V., Jipa M, Sbarcea B-G., Tókos A., Caramitu A.R., Lingvay I, Behavior in ac polarization of high-silicon cast irons, Studia UBB Chemia, 2021. LXVI, 1, 49-61.
Tókos A., Jipa M., Marinescu V., Bartha C., Caramitu A. R., Lingvay I., Electromagnetically stimulation of microbial activity in wastewater treatment- experimental equipment, Electroteh. Electron. Autom.(EEA), 2021. 69 (2), 45-52.
Geada P., Rodrigues R., Loureiro L., & al., Electrotechnologies applied to microalgal biotechnology – Applications, techniques and future trends, Renewable and Sustainable Energy Reviews, 2018. 94, 656-668
Medeiros Bauer L., & al., Growth stimulation and synthesis of lipids, pigments and antioxidants with magnetic fields in Chlorella kessleri cultivations, Bioresource Technology, 2017. 244, 1425–1432
Clippinger J., Davis R., Techno-Economic Analysis for the Production of Algal Biomass via Closed Photobioreactors: Future Cost Potential Evaluated Across a Range of Cultivation System Designs. NREL/TP-5100-72716. 2019. https://www.nrel.gov/docs/fy19osti/72716.pdf