Turbófeltöltők rotor-csapágy rendszereihez kötődő kihívások és lehetőségek áttekintése

Classification of challenges and opportunities related to turbocharger rotor-bearing systems

Authors

  • PESTHY Márk
  • TÓTH-NAGY Csaba

Keywords:

Turbocharger, Rotordynamics, Vibroacoustics, Measurement technologies, /, turbófeltöltő, rotordinamika, vibroakusztika, méréstechnika

Abstract

The complex mechanical loads acting on turbocharger during their lifetime necessitated the study and optimization of the rotordynamics and tribology system of turbochargers. The technical developments that aim to improve the efficiency of internal combustion engines, such as changes in the quality and composition of lubricants, can also indirectly affect the operation of the turbocharger, and cause some cases unexpected failures. The paper summarizes the diagnostic methods used in this topic and conclude potential fields for further optimization opportunities.

Kivonat

A turbófeltöltőket élettartamuk során érő összetett mechanikai terhelések szükségessé tették a feltöltők rotordinamikai-tribológiai rendszerének vizsgálatát és optimalizálását. A belsőégésű motor hatásfokának növelését célzó technológiai fejlesztések, például a kenőolaj minőségének és összetételének megváltoztatása közvetetten is hatással lehet a turbófeltöltő működésére, esetenként nem várt meghibásodására. A tanulmány összefoglalóan bemutatja az ebben a témakörben eddig használatos diagnosztikai módszer eket és lehetőségeket.

References

Nguyen-Schäfer, H. (2015). Springer Tracts in Mechanical Engineering, Rotordynamics of Automotive Turbochargers Second Edition. Springer, DOI 10.1007/978-3-319-17644-4

Knotek, J., Novotný, P., Maršálek, O., Raffai, P., Dlugoš, J., & Knotek, I. J. (2016). Influence of Turbine and Compressor Wheel Mass and Inertia on the Rotor Dynamics of Turbocharger, Tribology in Industry

Schweizer, B. (2010). Dynamics and stability of turbocharger rotors. Archive of Applied Mechanics, 80(9), 1017–1043. https://doi.org/10.1007/s00419-009-0331-0

Tian L., Wang W. J., & Peng Z. J. (2011). Dynamic behaviours of a full floating ring bearing supported turbocharger rotor with engine excitation. Journal of Sound and Vibration, Vol. 330, Issue 20, p. 4851-4874

Eling, R., van Ostayen, R., & Rixen, D. (2013). Dynamics of Rotors on Hydrodynamic Bearings, COMSOL Conference, Rotterdam

Wang, L., Bin, G., Li, X., & Liu, D. (2016). Effects of unbalance location on dynamic characteristics of high-speed gasoline engine turbocharger with floating ring bearings. Chinese Journal of Mechanical Engineering (English Edition), 29(2), 271–280. https://doi.org/10.3901/CJME.2015.1013.121

Cao, J., Dousti, S., Allaire, P., & Dimond, T. (2017). Nonlinear transient modeling and design of turbocharger rotor/semi-floating bush bearing system. https://doi.org/10.3390/lubricants5020016

Singh, A., & Gupta, T. C. (2020). Stability analysis of turbocharger rotor system supported on fluid film bearings. 3rd International Conference on Condensed Matter and Applied Physics (ICC-2019), 2220, 130009. https://doi.org/10.1063/5.0001248

Ziese, C., Irmscher, C., Nitzschke, S., Daniel, C., & Woschke, E. (2021). Run-Up Simulation of a Semi-Floating Ring Supported Turbocharger Rotor Considering Thrust Bearing and Mass-Conserving Cavitation. https://doi.org/10.3390/lubricants

Biet, C., & Baar, R. (2015). Turbocharger Test Bench Extension for Acoustic Measurements at Cold Environment Conditions. SAE International Journal of Engines, 8(4), 1790–1797. https://doi.org/10.4271/2015-01-1672

Gunter, E. J. (2020). Review and Failure Analysis of Three 4 Cylinder Engine Turbochargers And Methods on How to Extend Turbocharger Life. Dyrobes Rotordynamics Software Papers

Champagne, N., Obrecht, N., Gangopadhyay, A., Zdrodowski, R., Liu, Z. (2017). Enhanced anti-wear performance induced by innovative base oil in low viscosity engine oil. SAE Int. J. Fuels Lubricants 10(3), 822–830

Yang, K., Fletcher, K.A., Styer, J.P., Lam, W.Y., Guinther, G.H. (2017). Engine oil components effects on turbocharger protection and the relevance of the TEOST 33C test for gasoline turbocharger deposit protection. SAE Int. J. Fuels Lubricants 10(3), 815–821

Conley, B., & Sadeghi, F. (2020). Experimental and Analytical Investigation of Turbocharger Whirl and Dynamics. Tribology Transactions. https://doi.org/10.1080/10402004.2020.1827106

Downloads

Published

2022-04-20

Issue

Section

E. szekció – Géptervezés gépelemek, hajtások, gyártás és termeléstervezés, tribológia, CAD/CAM/CAE/CNC, ipari méréstechnika