Feszültségkorróziós repedésterjedés vizsgálata
Analysis of stress corrosion crack propagation
Keywords:
Stress corrosion cracking, light water reactor, finite element analysis, RMI model, agening mechanism, Feszültségkorróziós repedés, könnyűvizes reaktor, végeselem analízis, RMI modell, öregedési mechanizmusAbstract
Stress corrosion cracking is the phenomenon with the greatest impact on the safe operation of light water reactors. The severity of this failure makes it essential to develop a model to predict the growth rate of stress corrosion cracking. One such model is the RMI model, developed by Shoji et al. based on the slip-dissolution/oxidation theory. In the following, the implementation of such a model for stress corrosion crack propagation in finite element simulations is presented.
Kivonat
A feszültségkorróziós repedés a könnyűvizes reaktorok biztonságos működését legnagyobb mértékben befolyásoló jelenség. Ezen meghibásodás súlyossága elengedhetetlenné teszi egy olyan modell kialakítását, amellyel előre jelezhető a feszültségkorróziós repedés növekedési sebessége. Erre példa az RMI modell, amelyet Shoji és társai dolgoztak ki a repedéscsúcs alakváltozási sebességére vonatkozó elmélet alapján. A cikkben ezen modell végeselem szimulációba való implementálása kerül bemutatásra.
References
Dong, P., Brust, F. D. Welding Residual Stresses and Effects on Fracture in Pressure Vessel and Piping Components: A Millennium Review and Beyond ASME. J. Pressure Vessel Technol. 2000, 122(3), pp. 329–338. https://doi.org/10.1115/1.556189
Ford, F.P., Taylor, D.F., Andresen P.L., Ballinger R.G. Corrosion-assisted cracking of stainless and low alloy steels in LWR environments. EPRI final report RP2006-6, Electric Power Research Institute 2006.
Congleton J., Shoji T., Parkins R.N. The stress corrosion cracking of reactor pressure vessel steel in high temperature water. Corros Science 1985, 25(8):633–650
Ernest, D. Eason et al. Evaluation of the Fracture Research Institute Theoretical Stress Corrosion Cracking Model. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System – Water Reactors 2005
Shoji, T., Lu, Z., Murakami, H. Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics, Corrosion Science, 2010, 52 769-779
Gao Y., Hwang K. Elastic plastic fields in steady crack growth in a strain hardening material. Geochem Int, 1981., 50(50): 330–343
Shoji T., Suzuki S., Ballinger R.G. Theoretical prediction of SCC growth behavior-threshold and plateau growth rate. In: Proceedings of the seventh international symposium on environmental degradation of materials in nuclear power systems, Breckinridge, 1995, pp 881–889
Pathania, R. Evaulation of the Fracture Research Insitute theoritical stress corrosion cracking model, Comperation with meassured crack growth rates on stainless steel. EPRI jelentés 2004
F. P. Ford, The Crack-Tip System and Its Relevance to the Prediction of Cracking in Aqueous Environments, Environment-Induced Cracking of Metals, Proceedings of the First International Conference, R. Gangloff and M. Ives, eds., NACE, Houston, TX, Vol. NACE- 10, pp. 139-165, 1990.
W. H. Press, B. P. Flannery, S.A. Terkolsky, and W. T. Vetterling, Numerical Recipes, New York: Cambridge University Press, 1989, pp. 550-560.