Lineárisan rugalmas anyagmodell pontosságának vizsgálata poliamid modellezésekor optikai mérőrendszer segítségével

Investigating the accuracy of the linear elastic material models when modelling PA6 using an optical measurement system

Authors

  • FILE Máté
  • HURI Dávid
  • MANKOVITS Tamás

Keywords:

finite element analysis, digital image correlation, material model fitting, /, végeselemes szimuláció, digitális képkorreláció, anyagmodell illesztés

Abstract

For the modelling of polymers in the elastic region, many different material models are used. The simple linear elastic material model is one of these models however, it is only able to simulate the load response of these materials in the small-strain region. This work investigates the accuracy of the linear elastic material model when modelling polyamide (PA6) under quasi-static uniaxial tension. The finite element results were then compared to laboratory measurements, which were performed using the GOM Aramis full-field optical measurement system, thus the accuracy of the material model could be determined.

Kivonat

Műanyagok rugalmas zónában történő modellezésére több különböző anyagmodell használata ismert. A lineárisan rugalmas anyagmodell is ezek közé tartozik, azonban csak egy bizonyos nyúlásértékig képes ezen anyagok terhelésre történő válaszát leírni. Jelen cikkben a lineárisan rugalmas anyagmodell pontosságát vizsgáltuk poliamid (PA6) kvázi-statikus egytengelyű húzásra történő modellezésekor. A végeselemes vizsgálatok eredményeit a GOM Aramis teljes-mező optikai mérőrendszer által nyújtott eredményekkel vetettük össze, így megállapítottuk a modell pontosságát.

References

Bergström J. Mechanics of Solid Polymers. Amsterdam: Elsevier; 2015.

Starkova O, Aniskevich A. Limits of linear viscoelastic behavior of polymers. Mech Time-Dependent Mater. 2007 Nov 8;11(2):111–26.

Uchida M, Wakuda R, Kaneko Y. Evaluation and modeling of mechanical behaviors of thermosetting polymer under monotonic and cyclic tensile tests. Polymer (Guildf). 2019 Jun;174(March):130–42.

Nahar C, Sanariya S, Gurrala PK. Numerical simulation of polymers at low and moderate strain rates. Mater Today Proc. 2021;44:696–700.

Pálfalvi A, Mashimo K. Non-linear finite element analysis of a polymer-made machine part. Period Polytech Mech Eng. 2004;48(1):65–72.

Musteata AE, Pelin G, Botan M, Deleanu L. TENSILE TESTS FOR POLYAMIDE 6 AND POLYPROPILENE. Mech Test Diagnosis. 2019 Jan 15;8(4):16–22.

Shinzawa H, Mizukado J. Tensile deformation of polyamide (PA) 6 probed by rheo-optical near-infrared (NIR) spectroscopy. Vib Spectrosc. 2018 Nov;99(July):151–5.

Selles N, Nguyen F, Morgeneyer TF, Proudhon H, Ludwig W, Laiarinandrasana L. Comparison of voiding mechanisms in semi-crystalline polyamide 6 during tensile and creep tests. Polym Test. 2016 Feb;49:137–46.

McCormick N, Lord J. Digital Image Correlation. Mater Today. 2010 Dec;13(12):52–4.

Jerabek M, Major Z, Lang RW. Strain determination of polymeric materials using digital image correlation. Polym Test. 2010 May;29(3):407–16.

Filho JCAD, Nunes LCS. Experimental determination of deformation homogeneity and shear states using the digital image correlation method. Polym Test. 2021 Apr;96:107114.

Rojíček J, Čermák M, Halama R, Paška Z, Vaško M. Material model identification from set of experiments and validation by DIC. Math Comput Simul. 2021 Nov;189:339–67.

Tzibula S, Lovinger Z, Rittel D. Dynamic tension of ductile polymers: Experimentation and modelling. Mech Mater. 2018 Aug;123(January):30–42.

ISO-527-2. Plastics—determination of tensile properties—part 2: test conditions for moulding and extrusion plastics. British Standards Institution. 1997.

Downloads

Published

2022-04-20

Issue

Section

B. szekció – Anyagtudomány és technológia