Többtengelyű kovácsolás virtuális és fizikai szimulációinak összehasonlítása
Comparison of virtual and physical simulation of multi-axial forging processes
Keywords:
multi-axial forging, finite element, simulation, modelling, többtengelyű kovácsolás, végeselem, szimuláció, modellezés, GleebleAbstract
On a Gleeble 3800 thermophysical simulator, multi-axial forging of high-purity copper workpieces was performed. The strain rate during the simulation process was 0.1 s-1. The applied force of the MaxStrain unit and the geometric changes of the workpiece as a function of time were continuously recorded. For a deeper understanding of the multi-axial forging process, a finite element model was created in Qform3D. The force-displacement curves of the physical and finite element simulation were compared.
Kivonat
Gleeble 3800 típusú termofizikai szimulátoron nagy tisztaságú réz próbatestek multi-axiális kovácsolását végeztük 0.1 s-1 alakváltozási sebességgel. A MaxStrain egységen folytatott méréseknél folyamatosan regisztráltuk az alakító erőt és a próbatest geometriai változásait az idő függvényében. A többtengelyű kovácsolási folyamat törvényszerűségeinek megismerése érdekében végeselemes modellt készítettünk Qform3D program segítségével. A QForm3D szoftverben készített végeselemes szimuláció erő-elmozdulás görbéit hasonlítottuk össze a fizikai szimuláció során rögzített adatokkal.
References
V.M. Segal, V.I. Reznikov, A.E. Drobyshevkij, V.I. Kopylov, Russian Metallurgy, 1, 1981, pp. 115
V.M. Segal, Mater. Sci. Eng. A197, 1995, pp. 157-164
R.Z.Valiev, R.K. Islamgaliev, I. V. Alexandrov, „Bulk nanostructured materials from severe plastic deformation”, Progress in Mater. Sci. 45, 2000, pp. 103-189
A.A. Popov, I.Y. Pyshmintsev, S.I. Demakov, A.G. Illarionov, T.C. Lowe, R.Z. Valiev, „Structural and mechanical properties of nanocrystalline titanium processed by severe plastic deformation processing”, Scr. Mater. 37, 1997, 1089-1094
A. Korbel, M. Richert, J. Richert, „The effects of very high cumulative deformation on structure and mechanical properties of aluminium”, In: Proc. 2nd Riso Int. Symp. on Metallurgy and Material Science, Roskilde, Denmark, September 14–18, 1981, pp. 445–450
D. Magalhães, A. Pratti, A. Kliauga, J. Rubert, M. Ferrante, V. Sordi, „Numerical simulation of cryogenic cyclic closed-die forging of Cu: Hardness distribution, strain maps and microstructural stability”, Journal of Materials Research and Technology 8(1), 2018, 333-343
P. J. Szabó, Bereczki, B. Verő, „The Effect of Multiaxial Forging on the Grain Refinement of Low Alloyed Steel”, Periodica Polytechnica Mechanical Engineering 55(1), 2011, pp. 63-66
T. S. B. Naser, G. Krállics, „The effect of multiple forging and cold rolling on bending and tensile behavior of Al 7075 alloy”, Mater. Sci. Forum 729, 2012, pp.464-469
M. Tikhonova, V. Dudko, A. Belyakov, R. Kaibyshev, „The Formation of Submicrometer Scale Grains in a Super304H Steel during Multiple Compressions at 700°C”, Materials Science Forum 667–669, 2010, pp. 565–570
J. Li, F. Wu, „Finite Element Analysis on the Precision Forging of the Semimonocoque”, International Conference on Smart Grid and Electrical Automation (ICSGEA), Changsha, 2017, pp. 355-357
J. B. Renkó, D. Kemény, J. Nyirő, D. Kovács, „Comparison of cooling simulations of injection moulding tools created with cutting machining and additive manufacturing”, Materials Today: Proceedings 12, 2019, pp. 462-469
P. Bereczki, V. Szombathelyi, G. Krállics, „Determination of flow curve at large cyclic plastic strain by multiaxial forging on MaxStrain System”, International Journal of Mechanical Sciences 84, 2014, pp. 182-188.
P Bereczki, V Szombathelyi and G Krallics, „Production of ultrafine grained aluminum by cyclic severe plastic deformation at ambient temperature”, IOP Conf. Series: Materials Science and Engineering 63(012140), 2014
P. Bereczki, G. Krallics, J. B. Renkó, „The effect of strain rate under multiple forging on the mechanical and microstructural properties”, Procedia Manufacturing 37, 2019, pp. 253-260