Helyszíni metallográfiai vizsgálatok
In situ metallographic evaluations
Keywords:
replica, non-destructive evaluation, industrial furnace, in situ metallography, cellulose-acetate, replika, roncsolásmentes vizsgálat, ipari kazán, helyszíni metallográfia, cellulóz-acetát fóliaAbstract
In my research I inclusively studied the essential part of the regular condition evaluation of industrial furnaces, the in-situ (or replica) metallography. Eight different replica materials were compared based on economical, qualitative, and applicative angles. The tests were performed on a run steel material corresponding to P355 pressure vessel steel. For industrial purposes, the acetate foils with a thickness of
30 - 34µm were the optimum.
Kivonat
Kutatásom során egy nagyvízterű kazánból kimunkált P355 szerkezeti acélnak megfelelő folytacél füstcső replikavizsgálatát végeztem el, 4-4 különböző replika és ragasztó anyaggal, és az így kapott replikákat hasonlítottam össze felhasználhatósági, minőségi és gazdasági szempontok alapján. Ipari felhasználásra a 30 - 34µm vastagságú, cellulóz-acetát fóliákat ítéltem meg optimálisnak.
References
Jana S., Non-destructive in-situ replication metallography, Journal of Materials Processing Technology, Elsevier, 1995, 49(1-2), 85–114.
Marder A.R., Replication Microscopy Techniques for NDE, ASM Hangbook volume 17, Ohio, 1989
Zuljan D., Grum J., Non-destructive metallographic analysis of surfaces and microstructures by means of replicas, The 8th International Conference of the Slovenian Society for Non-Destructive Testing, 2005, 359–368.
Kovács D., Dobránszky J., Fodor T., Takáts V., Bonyár A., Investigation of the ASPN process of low alloy steel by using Ni or Cr coated active screens, Surface and Coatings Technology, Elsevier, 2020, 394, 1-10.
Kovács D., Dobránszky J., Bonyár A., Effect of different active screen hole sizes on the surface characteristic of plasma nitrided steel, Results in Physics, Elsevier, 2019, 12, 1311–1318.
Renkó J. B., Bonyár A., Szabó P. J, Development of Microfluidic Cell for Liquid Phase Layer Deposition Tracking, Acta Materiala, Transylvanica, EME, 2020, 3(2), 94-97
Neubauer B., Wedel U., Restlife Estimation of Creeping Components By Means of Replicas, Wearalischer Technischer Uberwachungsverein, Germany, 1983, 307–313.
Uguz A., Martin J.W., Plastic Zone Size Measurement Techniques for Metallic Materials, Materials Characterization, Elsveier, 1996, 37(2-3), 421–516.
Bakhtiari R., Zangeneh S., Bakhtiari Fotouh M., Jamshidi S.M., Shafeie A., Fitness for service assessment of a pressure vessel subjected to fire damage in a refinery unit, Engineering Faliure Analysis, Elsevier, 2017 80, 444–452.
Forlerer E., Castillo Guerra R., Ermini E., Use of topographic polymeric replica to characterize electric corrosion failure, Wear, Elsevier, 2007, 263(7-12) 1508–1512
Kovács D., Kemény D., Investigation of VVER-1200 reactor pressure vessel’s material, Iop Conference Series: Materials Science and Engineering, 2020, 903, 012051, 1-5.
Károly D., Asztalos L., Micsík T., Szabó P. J, Non-destructive analysis of explanted coronary artery stents, Acta Polytechnica Hungarica, Óbudai University, 2017, 14(2), 171-181.
Bálint B., Mészáros I., Problems of Ferrite Content Determination, Periodica Polytechnica Mechanical Engineering, Budapest University of Technology and Economics, 2020, 64(2), 150-158