Korszerű nitrid kerámiák előállítása és vizsgálat
Preparation and characterization of advanced nitride ceramics
Keywords:
layered silicon nitride, ceramics, powder technology, sinteringAbstract
In this study we produced new, mechanically robust ceramic-graphene multifunctional nanocomposites. The new multilayer nanocomposites are characterized by optimized microstructures based on traditional powder technology (grinding and sintering) and have more advantageous multifunctional properties compared to the functional ceramics produced so far. The optimization of the structural, mechanical and functional properties of the multilayer ceramic-graphene nanocomposites was performed based on the systematic investigation of the experimental parameters, composition and structure. In this work we discuss the fabrication of multilayer ceramic-graphene nanocomposites and the relationships between their structural and mechanical properties.
Kivonat
A kutatás során újszerű, mechanikailag robusztus kerámia-grafén multifunkcionális nanokompozitokat állítottunk elő. Az új, többrétegű nanokompozitok a hagyományos portechnológián (őrlés és szinterelés) alapuló optimalizált mikroszerkezetekkel jellemezhetők, és előnyösebb multifunkcionális tulajdonságokkal rendelkeznek az eddig előállított funkcionális kerámiákhoz képest. A többrétegű kerámia-grafén nanokompozitok szerkezeti, mechanikai és funkcionális tulajdonságainak optimalizálását a kísérleti paraméterek, az összetétel és szerkezet szisztematikus vizsgálata alapján végeztük el. A kéziratban a többrétegű kerámia-grafén nanokompozit
References
Minatto, et al., Multilayered ceramic composites – review, Adv. Appl. Ceram. 114 (3) (2015).
W.J. Clegg, K. Kendall, etal., A simple way to make tough ceramics, Nature 347 (1990) 455–457.
S. Hampshire, Silicon nitride ceramics — review of structure, processing and properties, J. Achiev. Mater. Manuf. Eng. 24 (2007) 43–50.
F.L. Riley, Silicon nitride and related materials, J. Am. Ceram. Soc. 83 (2004) 245–265.
K. Watanabe, A. Takahashi, Thermal shock-resistant silicon nitride sintered material. US Patent, 1992,US 5118644A, NKG INSULATORS, LTD., Japan.
P.F. Becher, etal., Using micr. to attack the brittle nature of silicon nitride cer., MRS Bull. 20 (1995) 23–27.
C.-W. Li, S.-C. Lui, G. Goldacker, Relation between strength, microstructure and grain-bridging characteristics in in situ reinforced silicon nitride, J. Am. Ceram.Soc. 78 (1995) 449–459.
M. Mitomo, etal., Microstructural design and control of silicon nitride ceramics, MRS Bull. 20 (1995) 38–41.
PR Rauta, etal., Phase transf. of ZrO2 nanoparticles produced from zircon, Phase Transitions, 85:1-2, 13-26.
R. Stevens, Engineering Properties of Zirconia, in: Engineering Materials Handbook, Ceramics and Glasses, ASM International, 1991, p. 775.
G. Ziegler, J. Heinrich, G. Wötting, Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride, Biomater. Sci. 22 (1987) 3041.
A. Sayyadi-Shahraki, S. Mahdi Rafiaei, S. Ghadami, Khan A. Nekouee, Densification and mechanical properties of spark plasma sintered Si3N4/ZrO2 nano-composites, J.Alloys. Compd. 776 (2019) 798–806.
C. Balázsi, etal., Prep. and char. of carbone nanotube reinforced silicon nitride comp., Mat. Sci. & Eng. C 23 (6-8) (2003) 1133–1137.
P. Kun, O. Tapasztó, F. Wéber, C. Balázsi, Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites, Ceram. Int. 38 (1) (2012) 211–216.
A. Rincón, A.S.A. Chinelatto, R. Moreno, Tape casting of alumina/zirconia suspensions containing graphene oxide, J. Eur. Ceram. Soc. 34 (2014) 1819–1827.
Laifei Cheng, et al., Structure design, fabrication, properties of laminated ceramics: a review, Int. J. of Lightweight Materials and Manufacture 1 (3) (2018) 126–141.
R. Bermejo, L. Ceseracciu, L. Llanes, M. Anglada, Fracture of layered ceramics, Key Eng. Mater. 409 (2009) 94–106.