Adaptív optimalizálás a logisztikai disztribúciós központokhoz

Adaptive Optimization of Logistics Distribution Centers

Authors

  • CABRERA Ernesto González
  • ILLÉS Béla
  • CSERVENÁK Ákos

Keywords:

Distribution Centers, Logistics Planning, Sustainability, Resilience, Optimization, /, Disztribúciós központok, Logisztikai tervezés, Fenntarthatóság, Rugalmasság, Optimalizálás

Abstract

The optimization of distribution centers (DCs) is a critical element in enhancing the efficiency and resilience of global supply chains. This paper presents a comprehensive methodological framework for planning, evaluating, and selecting logistics models adapted to distribution centers, combining quantitative and qualitative tools. These models are evaluated using decision matrices, the analytical hierarchical process (AHP), and Monte Carlo simulations. The methodology integrates cost, delivery time, flexibility, sustainability, and operational resilience metrics, allowing logistics decisions to be adapted to dynamic and highly uncertain environments.

Kivonat

A disztribúciós központok optimalizálása kulcsfontosságú elem a globális ellátási láncok hatékonyságának és rugalmasságának javításában. Ez a tanulmány egy átfogó módszertani keretrendszert mutat be a logisztikai modellek tervezésére, értékelésére és kiválasztására, amely kvantitatív és kvalitatív eszközöket kombinál. A tanulmány három fő konfigurációs modellt vizsgál: centralizált, decentralizált és vegyes modellek. Ezeket a modelleket döntési mátrixok, az analitikus hierarchikus folyamat (AHP) és Monte Carlo szimulációk segítségével értékelik.

References

Ballou, R.H., Logistics: supply chain management. 2004: Pearson Education.

Chopra, S. and P. Meindl, Supply Chain Management: Strategy, Planning, and Operation. 2016: Pearson.

Christopher, M., Logistics & Supply Chain Management. 2016: Pearson Education.

Arrienti, F.D. and B.E. Questioners. Reduce Overtime of Distribution Centre by Re-Layout and Employee Shift Scheduling Use Class Based Storage and Integer Linear Programming. in E3S Web of Conferences. 2023. EDP Sciences.

Awasthi, A. and S.S. Chauhan, A hybrid approach integrating Affinity Diagram, AHP and fuzzy TOPSIS for sustainable city logistics planning. Applied Mathematical Modelling, 2012. 36(2): p. 573-584.

Becerra-Fernandez, M., et al., Assignment-simulation model for forklifts in a distribution center with aisle constraints. Simulation Modelling Practice and Theory, 2024. 133.

Ben-Daya, M., E. Hassini, and Z. Bahroun, Internet of things and supply chain management: a literature review. International Journal of Production Research, 2019. 57(15-16): p. 4719-4742.

Cao, J., et al., Optimal logistics scheduling with dynamic information in emergency response: Case studies for humanitarian objectives. Advances in Production Engineering And Management, 2023. 18(3): p. 381-395.

Fedtke, S. and N. Boysen, Layout planning of sortation conveyors in parcel distribution centers. Transportation Science, 2017. 51(1): p. 3-18.

Ghasemi, P., et al., Stochastic optimization model for distribution and evacuation planning (A case study of Tehran earthquake). Socio-Economic Planning Sciences, 2020. 71.

Jamshidi, A., et al., A review of priority criteria and decision-making methods applied in selection of sustainable city logistics initiatives and collaboration partners. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2019. 57(15-16): p. 5175-5193.

Govindan, K., et al., Multi criteria decision making approaches for green supplier evaluation and selection: a literature review. JOURNAL OF CLEANER PRODUCTION, 2015. 98: p. 66-83.

Liu, Y. and C. Zhou. Optimization Model and Algorithm Design of Rural Logistics Distribution Center Location Based on Particle Swarm Optimization. in Proceedings - 2024 International Conference on Electrical Drives, Power Electronics and Engineering, EDPEE 2024. 2024. Institute of Electrical and Electronics Engineers Inc.

Schumann, D., et al., Development of a Procedure Model to Compare the Picking Performance of Different Layouts in a Distribution Center, in Lecture Notes in Production Engineering. 2023, Springer Nature. p. 575-586.

Li, Q., et al., WarehouseVis: A Visual Analytics Approach to Facilitating Warehouse Location Selection for Business Districts. COMPUTER GRAPHICS FORUM, 2020. 39(3): p. 483-495.

Downloads

Published

2025-05-05