Megvilágítás fejlesztése hiperspektrális kamerarendszerhez

Lighting development for hyperspectral camera system

Authors

  • KOBA Máté

Keywords:

LED, spectrum, hyperspectral, mineral, identification, /, spektrum, hiperspektrális, ásvány, meghatározás

Abstract

The study presents a new underwater hyperspectral camera system with a combined lighting solution. The system utilises LED-based technology, which replicates the spectrum of sunlight. In addition to the visible range, it also emits in the infrared spectrum, which significantly improves the contrast of mineral surfaces and compensates for the rapid absorption of wavelengths beyond red in water.

Kivonat

A tanulmány egy új, víz alatti hiperspektrális kamerarendszer kombinált megvilágítási megoldását mutatja be. A rendszer LED-alapú technológiát alkalmaz, ami a napfény közelített spektrumát adja vissza. A látható tartomány mellett az infravörös spektrumban is sugároz, ami jelentősen javítja az ásványi felszínek kontrasztját és kompenzálja a vörösön túli hullámhosszok vízben fellépő gyors elnyelődését.

References

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, Imaging Spectrometry for Earth Remote Sensing, Science (1979), vol. 228, no. 4704, pp. 1147–1153, Jun. 1985, doi: 10.1126/science.228.4704.1147.

R. J. Murphy, S. T. Monteiro, and S. Schneider, Evaluating Classification Techniques for Mapping Vertical Geology Using Field-Based Hyperspectral Sensors, IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 8, pp. 3066–3080, Aug. 2012, doi: 10.1109/TGRS.2011.2178419.

J. Tegdan et al., Underwater hyperspectral imaging for environmental mapping and monitoring of seabed habitats, in OCEANS 2015 - Genova, IEEE, May 2015, pp. 1–6. doi: 10.1109/OCEANS-Genova.2015.7271703.

F. Foglini et al., Underwater Hyperspectral Imaging for seafloor and benthic habitat mapping, in 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), IEEE, Oct. 2018, pp. 201–205. doi: 10.1109/MetroSea.2018.8657866.

Curtis D. Mobley, Light and Water: Radiative Transfer in Natural Waters. 1994.

Z. Wang, P. Xu, B. Liu, Y. Cao, Z. Liu, and Z. Liu, Hyperspectral imaging for underwater object detection, Sensor Review, vol. 41, no. 2, pp. 176–191, May 2021, doi: 10.1108/SR-07-2020-0165.

Z. Qian et al., Characteristics of underwater lighting based on white LEDs, Optik (Stuttg), vol. 245, p. 167638, Nov. 2021, doi: 10.1016/j.ijleo.2021.167638.

J. K. Lotsberg, , E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, Laboratory measurements of light scattering from marine particles, Limnol Oceanogr Methods, vol. 5, no. 1, pp. 34–40, Jan. 2007, doi: 10.4319/lom.2007.5.34.

M. Koba, A. Trohak, N. Zajzon, R. Z. Papp, and M. L. Kiss, Development of a Controller Unit for Multispectral Imaging System, in Proceedings of the 2020 21st International Carpathian Control Conference, ICCC 2020, 2020. doi: 10.1109/ICCC49264.2020.9257210.

Downloads

Published

2025-10-06