Villamos gépek robusztus tervezése Adze-modeler segítségével
Robust design optimization of electrical machines in Adze-modeler
Keywords:
finite element methods, electrical machine, robusztus tervezés, optimalizálás, digital twins, végeselem módszer, villamos gépek, robust design optimizationAbstract
Robust design of electrical machines is a complex engineering task that requires the combined application of several engineering, numerical computation and optimisation methods. In order to design a robust machine and reduce the number of waste parts during production, it is essential to consider manufacturing tolerances from the initial, preliminary design stage. Tolerance analysis of a design can, in itself, increase the computational cost of a design optimisation process several times over. This task is supported by Adze-modeler, a finite element library supporting a wide range of mathematical, design of experiments and artificial intelligence methods, which is capable of publicising the parametric simulations created in it, i.e. saving them as digital twins.
Kivonat
Villamos gépek robusztus tervezése összetett mérnöki feladat, amelynek a megoldásához többfajta mérnöki, numerikus térszámítási és optimalizálási módszer együttes alkalmazása szükséges. Robosztus gép kialakításához, illetve a gyártás során keletkező selejtszám csökkentéséhez, nélkülözhetetlen a gyártási toleranciák figyelembevétele, már a tervezés kezdeti, előzetes tervezési szakaszától kezdődően. Egy terv toleranciaanalízise, önmagában többszörösére képes emelni egy tervezési, optimalizálási folyamat számítási költségét. Ennek a feladatnak a támogatását célozza meg az Adze-modeler, a számos matematikai, design of experiments és mesterséges intelligenciás módszert támogató végeselem könyvtár, mely képes a benne létrehozott parametrikus szimuláció közművesítésére, azaz digitális ikerként való elmentésére.
References
Y. Tenne and C.-K. Goh, Computational intelligence in expensive optimization problems, Springer, Sci-ence & Business Media, 2010.
A. Darwish, Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications,
Future Computing and Informatics Journal, vol. 3, no. 2, pp. 231–246, 2018.
M. Yilmaz and P. T. Krein, Capabilities of finite element analysis and magnetic equivalent circuits for electrical machine analysis and design, in 2008 IEEE Power Electronics Specialists Conference, pp. 4027–4033, IEEE, 2008.
G. Lei, J. Zhu, and Y. Guo, Multidisciplinary design optimization methods for electrical machines and drive systems. Springer, 2016.
T. Orosz, A. Rassõlkin, A. Kallaste, P. Arsénio, D. Pánek, J. Kaska, and P. Karban, Robust design
optimization and emerging technologies for electrical machines: Challenges and open problems, App-lied Sciences, vol. 10, no. 19, 2020.
G. Bramerdorfer, J. A. Tapia, J. J. Pyrhönen, and A. Cavagnino, Modern electrical machine design
optimization: Techniques, trends, and best practices, IEEE Transactions on Industrial Electronics, vol. 65, pp. 7672–7684, Oct 2018.
P. Karban, D. Pánek, T. Orosz, I. Petrášová, and I. Doležel, “Fem based robust design optimization with agros and ārtap,” Computers & Mathematics with Applications, pp. 1–16, 2020.
Bramerdorfer, Gerd. Computationally efficient tolerance analysis of the cogging torque of brushless PMSMs. IEEE Transactions on Industry Applications 53, no. 4 (2017): 3387-3393.
A. Nyitrai and T. Orosz, “Cogging torque analysis and optimization of axial flux permanent-magnet motorsby 2d finite element analysis,”Periodica Polytechnica Electrical Engineering and Computer Scien-ce, 3001inpress 2021a.
A. Kallaste, A. Rass ̃olkin, T. Orosz, G. Demidova, K. Vladimir, V. Rjabtˇsikov, and T. Vaimann, “Imp-lementation of digital twins for electrical energy conversion systems in selected case studies,”Proceedings ofthe Estonian Academy of Sciences, vol. 70, no. 1, pp. 19–39, 2021.
Kuptsov, V.; Fajri, P.; Trzynadlowski, A.; Zhang, G.; Magdaleno-Adame, S. Electromagnetic Analysis and Design Methodology for Permanent Magnet Motors Using MotorAnalysis-PM Software. Machines 2019, 7, 75. https://doi.org/10.3390/machines7040075
Hsu, J S, Ayers, C W, Coomer, C L, Wiles, R H, Burress, T A, Campbell, S L, Lowe, K T, and Michel-haugh, R T. Report on Toyota/Prius Motor Torque Capability, Torque Property, No-Load Back EMF, and Mechanical Losses, Revised May 2007. United States: N. p., 2007. Web. doi:10.2172/921782.
Hsu, J.S.; Nelson, S.C.; Jallouk, P.A.; Ayers, C.W.; Wiles, R.H.; Campbell, S.L.; Coomer, C.L.; Lowe, K.T.; Burress, T.A. Report on Toyota Prius Motor Thermal Management; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2005; ORNL/TM-2005/33.
Staunton, R.H.; Ayers, C.W.; Marlino, L.D.; Chiasson, J.N.; Burress, T.A. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2006; ORNL/TM-2006/423.
Bramerdorfer, Gerd. (2019). Tolerance Analysis for Electric Machine Design Optimization: Classification, Modeling and Evaluation, and Example. IEEE Transactions on Magnetics. 55. 1-9. 10.1109/TMAG.2019.2903029.
Yang, Yongxi & Bianchi, Nicola & Zhang, Chengning & Zhu, Xiaofeng & Liu, Haipeng & Zhang, Shuo. (2020). A Method for Evaluating the Worst-Case Cogging Torque Under Manufacturing Uncertainties. IEEE Transactions on Energy Conversion. PP. 1-1. 10.1109/TEC.2020.2996098.
Sang-Baeck Yoon, In-Soung Jung, Dong-Seok Hyun, Jung-Pyo Hong and Young-Jung Kim, "Robust shape optimization of electromechanical devices," in IEEE Transactions on Magnetics, vol. 35, no. 3, pp. 1710-1713, May 1999, doi: 10.1109/20.767356.