Mobil robotkar felhasználása a mezőgazdaságban

Mobile robotic manipulator for precision agriculture


  • KÖLLŐ Magor Örs
  • MOLNÁR Szilárd
  • TAMÁS Levente


robotkar, mezőgazdaság, képfelismerés, mesterséges intelligencia, navigáció


In this paper a mobile manipulator arm for automated harvesting is proposed. This device can be useful in such places, where the human resources are too expensive. The main parts of the assembly are a four-wheeled robot and a robotic arm, depth sensing camera and embedded GPU device. The device can navigate through obstacles without hitting them, and find a path to the targeted plant. With a camera it can recognize the fruits, and based on visual servoing it can crop them.


Ebben a dolgozatban bemutatunk egy mobil robot kart, amely nagy segítséget nyújthat az agrikultúrában, főleg olyan helyeken, ahol az emberi munkaerőhiány van. Az eszköz főbb alkotórészei egy négykerekű mozgó robot, valamint egy robotkar. A szerkezet képes elnavigálni az akadályok között és amikor talál egy növényt, képes felismerni rajta a gyümölcsöt, majd azt leszedni, és elszállítani.


L. F. P. Oliveira, A. P. Moreira and M. F. Silva, "Advances in Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead," Robotics, vol. 10, no. 2, 2021.

S. Bachche, "Deliberation on Design Strategies of Automatic Harvesting Systems: A Survey," Robotics, vol. 4, no. 2, pp. 194-222, 2015.

"AGRO AI," [Online]. Available: [Accessed 13 09 2021].

A. M. Robots, "PIONEER3AT datasheet," 2011. [Online]. Available: [Accessed 13 09 2021].

"3D Time of Flight (ToF)," [Online]. Available: [Accessed 13 09 2021].

"Cyton Gamma 1500 Arm Specifications," [Online]. Available: [Accessed 13 09 2021].

E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey and K. Konolige, "The Office Marathon: Robust Navigation in an Indoor Office Environment," in International Conference on Robotics and Automation, 2010.

G. Grisetti, C. Stachniss and W. Burgard, "Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters," IEEE Transactions on Robotics, vol. 23, pp. 34-46, 2007.

G. Grisetti, C. Stachniss and W. Burgard, "Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling," In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), 2005.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto and H. Adam, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications," 2017.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C. Berg, "SSD: Single Shot MultiBox Detector," in Computer Vision -- ECCV 2016, Springer International Publishing, 2016, pp. 21-37.

D. Coleman, I. A. Șucan, S. Chitta and N. Correll, "Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study," Journal of Software Engineering for Robotics, vol. 5, no. 1, p. 3–16, 2014.

G. Flandin, F. Chaumette and E. Marchand, "Eye-in-hand / eye-to-hand cooperation for visual," IEEE Int. Conf. on Robotics and Automation, ICRA’00,, pp. 41-2746. , 2000.

K. Daniilidis, "Hand-Eye Calibration Using Dual Quaternions," The International Journal of Robotics Research, vol. 18, no. 3, pp. 286-298, 1999.

"Hand-Eye Calibration," [Online]. Available: [Accessed 13 09 2021].

V. Munoz, I. Garcia-Morales, J. Morales, J. Gomez-DeGabriel, J. Fernandez-Lozano and A. Garcia-Cerezo, "Adaptive cartesian motion control approach for a surgical robotic cameraman," IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, vol. 3, pp. 3069-3074, 2004.