Összeköttetés alapú kommunikációs protokollok állapottér-idő elemzése dinamikus idővetemítéssel
Dynamic Time Warping Based State Space-Time Analysis of the Connection Oriented Protocols
Keywords:
Internet of Things, transport layer protokols, time series analysis, Dynamic Time Warping, k-Mean clustering, Hiearchical clustering, Tárgyak Internete, szállítási réteg protokoll, idősoranalízis, idővetemítés, k-Mean algoritmus, Hierarchikus klaszter algoritmusAbstract
Processing of the data generated by the Internet of Things requires Big Data category services. High transmission capacity services are needed to provide efficiency of the interconnected high capacity processing and storage subsystems. There are considerable number of different congestion control mechanisms offered by the Internet technologies today. In the paper we investigate sixteen different connection oriented service types of the transport layer and we evaluate similarity measure based on Dynamic Time Warping algorithm. It was found that the TCP versions used in practice today can be grouped in three behaviour classes. Class belonging of these versions depend strongly on the number of parallel communication sessions running on the same path of data transfer.
Kivonat
A Tárgyak Internete által egyre nagyobb mennyiségben előállított szenzor adat feldolgozása Big Data kategóriába tartozó módszereket igényel. A hatékonyság miatt ezen adatok nagykapacitású feldolgozó, illetve tároló alrendszerekhez való továbbítása nagysebességű átvitelt feltételez. Mivel az Internet technológiák a szállítási rétegében sok féle torlódásvezérlési mechanizmus működtetnek, a dolgozatban ezek közül a gyakorlatban elterjedt tizenhat változat összehasonlítását végeztük el. Dinamikus idővetemítés módszerével végzett számszerűsítés alapján ezek három fajta viselkedési módot mutatnak, ami erőteljesen függ az azonos kommunikációs útvonalon egyidőben működő kapcsolatok számától.
References
Elgendy N, Elragal A. Big data analytics: a literature review paper, In: Perner P, editor. Advances in data mining. applications and theoretical aspects. ICDM 2014. Lecture Notes in Computer Science. vol. 8557. Cham: Springer; 2014.
Lee R, Luo T, Huai Y, Wang F, He Y, Zhang X. Ysmart: Yet another SQL-to-mapreduce translator. IEEE International conference on distributed computing systems (ICDCS). 2011. p. 25–36.
Gal Z, Varga I, Tajti T, Kocsis G, Langmajer Z, Kosa M, Panovics J. Performance evaluation of massively parallel communication sessions. In: Iványi P, Topping BHV, editors. Proceedings of the sixth international conference on parallel, distributed, GPU and cloud computing for engineering. Stirlingshire, UK: Civil-Comp Press; 2019. p. 34. https://doi.org/10.4203/ccp.112.34.
Zoltan Gal, Gergely Kocsis, Tibor Tajti, Robert Tornai. Performance evaluation of massively parallel and high speed connectionless vs. connection oriented communication sessions. Advances in Engineering Software, Elsevier, Advances in Engineering Software 157-158 (2021) 103010, 2021.
Bagnulo M. Threat analysis for TCP extensions for multipath operation with multiple addresses, RFC 6181. INTERNET STANDARD; 2011.
Ford A. Architectural guidelines for multipath TCP development. RFC 6182. INTERNET STANDARD; 2011.
Huston G. TCP and BBR, RIPE 76 meeting. 2018. https://ripe76.ripe.net/presen tations/10-2018-05-15-bbr.pdf(last visited 08.11.2019).
Cardwell N, Cheng Y, Gunn CS, Yeganeh SH, Jacobson V. BBR: congestion-based congestion control - measuring bottleneck bandwidth and round-trip propagation time. ACMQueue Netw 2016;14:5.
Allman M, Paxson V, Blanton E. TCP congestion control. RFC 5681. 2009.
Floyd S. Congestion control principle. ser RFC2914. Internet Engineering TaskForce (IETF); 2000.
Xu L, Harfoush K, Rhee I. Binary increase congestion control for fast, long distance networks. IEEE INFOCOM. 2004.
Hayes DA, Armitage G. Revisiting TCP congestion control using delay gradients. IFIP Networking. Springer; 2011. p. 328–41.
CUBIC T. A transport protocol for improving the performance of TCP in long distance high bandwidth cyber-physical systems. IEEE International Conference on Communications workshops (ICC Workshops). 2018.
Alizadeh M, Greenberg A, Maltz DA, Padhye J, Patel P, Prabhakar B, Sengupta S, Sridharan M. Data center TCP (DCTCP). Proc. ACM SIGCOMM, New Delhi. Data Center Networks session; 2010.
Alizadeh M, Javanmard A, Prabhakar B. Analysis of DCTCP: stability, convergence, and fairness. Proc ACM SIGMETRICS, San Jose. 2011.
Floyd S. Highspeed TCP for large congestion windows. RFC. INTERNET STANDARD; 2003.
Floyd S, Ratnasamy S, Shenker S. Modifying TCP’s congestion control for high speeds. Technical note. 2002.
Shorten RN, Leith DJ. H-TCP: TCP for high-speed and long-distance networks. Proc. PFLDnet, Argonne. 2004.
Caini C, Firrincieli R. TCP-hybla: a TCP enhancement for heterogeneous networks. Int J Satellite Communication 2004.
Liu S, Basar T, Srikant R. TCP-illinois: a loss and delay-based congestion control algorithm for high-speed networks. ScienceDirect Performance Evaluation, 2008;65:417–40.
Kuzmanovic A, Knightly EW. TCP-LP: a distributed algorithm for low priority data transfer. IEEE INFOCOM. 2003.
Fu CP, Liew SC. TCP veno: TCP enhancement for transmission over wireless access networks. IEEE Journal Selected Areas of Communication 2003.
Mascolo S, Casetti CE, Gerla M, Sanadidi MY, Wang R. TCP westwood: Bandwidth estimation for enhanced transport over wireless links. MobiCom; 2001.
Baiocchi A, Castellani AP, Vacirca F. YeAH-TCP: Yet another highspeed TCP. CiteSeerX; 2008.
Meister BW, Janson PA, Svobodova L. Connection-oriented versus connectionless protocols: a performance study. IEEE Transactions on Computers 1985:1164–73.C34/12
Postel J. ISI, user datagram protocol. RFC 768. INTERNET STANDARD; 1980.