Hibaszűrés nagy felbontású nyelőcső manometriában gépi tanulás segítségével

Error filtering in high resolution esophageal manometry using machine learning

Authors

  • CZAKO Zoltán
  • SEBESTYEN Gheorghe
  • HANGAN Anca

Keywords:

probe positioning, high resolution esophageal manometry, machine learning, szonda pozicionálás, nagy felbontású nyelőcső manometria, gépi tanulás

Abstract

In this paper we present a Machine Learning based solution for detecting probe positioning failures in High Resolution Esophageal Manometry images, which can be used before applying the Chicago Classification [1] algorithm, this way maximizing the precision of the esophageal motility diagnosis.

Kivonat

Ebben a cikkben egy gépi tanuláson alapuló megoldást mutatunk be a szonda pozicionálási hibáinak észlelésére nagy felbontású nyelőcső manometria képeken, amely felhasználható a Chicago osztályozási algoritmus [1] alkalmazása előtt, így maximalizálva a nyelőcső motilitás diagnózisának pontosságát.

References

Kahrilas P. J., Bredenoord A. J., Fox M., Gyawali C. P., Roman S., Smout A. J., Pandolfino J. E., The Chicago Classification of esophageal motility disorders, v3.0. Neurogastroenterol Motility, 2015

Lappas B. M., Patel D. A, Vaezi M. F., An Overview of Achalasia and Its Subtypes, PubMed, 2017

Sirinawasatien A., Sakulthongthawin P., Manometrically jackhammer esophagus with fluoroscopically/endoscopically distal esophageal spasm: a case report, BMC Gastroenterology, 2021

Wu J., Hicks C., Breast Cancer Type Classification Using Machine Learning, PubMed, 2021

Amrane M., Oukid S., Gagaoua I., Ensari T., Breast cancer classification using machine learning, Biomedical Engineering's Meeting (EBBT), 2018

Irmak E., Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2021

Khan M. Ashraf A., Alhaisoni I., M., Multimodal Brain Tumor Classification Using Deep Learning and Robust Feature Selection: A Machine Learning Application for Radiologists, Diagnostics (Basel, Switzerland), 2020

Dai L., Wu L., Li H., A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nature Communications 12, 2021

Alyoubi L. W., W. Shalash M., Abulkhair M. F., Diabetic retinopathy detection through deep learning techniques: A review, Informatics in Medicine Unlocked, 2020

Czako Z., Sebestyen G., Hangan A., Colorectal Image Classification with Transfer Learning and Auto-Adaptive Artificial Intelligence Platform, Trends and Innovations in Information Systems and Technologies, 2020

Sánchez-Peralta L. F., Bote-Curiel L., Picón A., Sánchez-Margallo F. M., Pagador J. B., Deep learning to find colorectal polyps in colonoscopy: A systematic literature review, Artificial Intelligence in Medicine, 2020

Frigo A., Costantini M., C. Fontanella G., Salvador R., Merigliano S., Carniel E. L., A Procedure for the Automatic Analysis of High-Resolution Manometry Data to Support the Clinical Diagnosis of Esophageal Motility Disorders, IEEE Transactions on Bio-medical Engineering, 2018

Hoffman M. R., Mielens J. D., Omari T. I., Rommel N., Jiang J. J., McCulloch T. M., Artificial neural network classification of pharyngeal high-resolution manometry with impedance data, Laryngoscope, 2013

Kou W., Carlson D. A., Baumann A. J., Donnan E., Luo Y., Pandolfino J. E., Etemadi M., A deep-learning-based unsupervised model on esophageal manometry using variational autoencoder, Artificial Intelligence in Medicine, 2021

Downloads

Published

2021-10-11