Mikroalgák növesztésének serkentése elektromágneses térben. Távvezérlésű automatizált berendezés és fotobioreaktor

Growth stimulation of microalgae in electromagnetic field. Remote controlled and automated equipment and photobioreactor

Authors

  • BARTHA Csaba
  • TÓKOS Attila
  • BARTHA Áron
  • LINGVAY József

Keywords:

microalgae, electromagnetic field, extremely low frequency ELF, SCADA, automated equipment

Abstract

A complex, relatively high productivity, remotely controlled and automated equipment suitable for growing microalgae was developed. It was experimentally shown on the installed equipment that the growth rate of Chlorella vulgaris exposed to 50Hz 15V/m electromagnetic field EMF is approx. 2.75 times greater than the reference (same physical and chemical operating parameters but without EMF).

Kivonat

Mikróalgák növesztésére alkalmas komplex, aránylag nagy termelékenységű, távvezérlésű és automatizált, berendezés volt kifejlesztve. A kivitelezett berendezésen kísérletileg ki lett mutatva, hogy az 50Hz-es 15V/m elektromágneses tér EMT hatására a Chlorella vulgaris növekedési sebessége kb. 2,75-ször nagyobb, mint a referencia (azonos fizikai és kémiai működési paraméterek de EMT nélkül).

References

Lingvay, I., Vranceanu-Jipa, M., Chihaia, R.A., Tókos, A., Bartha, C., Circiumaru, G., Impact of 50 Hz Electromag-netic Field on the Growth of Chlorella vulgaris. Appl. Sci. 2024, 14, 6506. https://doi.org/10.3390/app14156506

Patras D., Moraru C.V., Socaciu C., Screening of bioactive compounds synthesized by microalgae: a progress overview on extraction and chemical analysis, Studia UBB Chemia, LXIII, 1, 2018 (pp. 21-35) , https://doi:10.24193/subbchem.2018.1.02

Fernandes Bruno D., Mota A., Teixeira Jose A., Vicente Antonio A. , Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends, Biotechnology Advances, V. 33 - 6, 2015, pp 1228-1245, https://doi.org/10.1016/j.biotechadv.2015.03.004

Aro E-M., From first generation biofuels to advanced solar biofuels, Ambio. 2016 Jan; 45(Suppl 1): 24–31., doi: 10.1007/s13280-015-0730-0

Tredici M. R., Photobiology of microalgae mass cultures: understanding the tools for the next green revolution, Biofuels 1, no. 1 (2010), pp. 143-162. https://doi.org/10.4155/bfs.09.10

Klinthong, W., Yang, Y.H., Huang, C.H., Tan, C.S. (2015). A Review: Microalgae and Their Applications in CO2 Capture and Renewable Energy. Aerosol Air Qual. Res. 15: 712-742. https://doi.org/10.4209/aaqr.2014.11.0299

Clippinger J., Davis R., Techno-Economic Analysis for the Production of Algal Biomass via Closed Photobioreactors: Future Cost Potential Evaluated Across a Range of Cultivation System Designs. Technical Report NREL/TP-5100-72716. 2019. https://doi.org/10.2172/1566806

Bartha C., Jipa M., Caramitu A-R., Voina A., Tókos A., Circiumaru G., Micu D-D., Lingvay I., Behavior of Microorganisms from WastewaterTreatments in Extremely Low-Frequency Electric Field, Biointerface Resarch in Applied Chemistry, Volume 12, Issue 4, 2022, pp. 5071 – 5080 https://doi.org/10.33263/BRIAC124.50715080

Bartha C., Tókos A., Jipa M, Caramitu A., Voina A., Circiumaru G,Micu D-D., Lingvay i. Saving Energy in Biological Wastewater Treatment by Using Extremely Low-Frequency Electric Field—Pilot-Scale Study, Sustainability 2023, 15, 11670. https://doi.org/10.3390/su151511670

Voina A., Tokos A., Jipa M., Cîrciumaru G., Bartha C., Chihaia R.A., Tănase N., Lingvay I., Equipment for Increasing the Phototrophic Microalgae Production at Lab Scale, International Conference on Electrical, Computer and Energy Technologies (ICECET 2023), 16-17 November 2023, Cape Town-South Africa, IEEE Xplore DOI: 10.1109/ICECET58911.2023.10389345

Tókos A., Cîrciumaru G., Bartha C., Voina A., Vrânceanu-Jipa M, Caramitu A-R., Chihaia R-A., Lingvay I., Automation control system of an equipment for ELF stimulated phototrophic microalgae production, ACDSA, IEEEXplore, 2024, DOI: 10.1109/ACDSA59508.2024.10468047

Allen M. M., Stanier R. Y., (1968). Growth and Division of Some Unicellular Blue-green Algae. Journal of General Microbiology, 51(2), pp. 199–202, https://doi.org/10.1099/00221287-51-2-199

Griffiths M. J., Garcin C., van Hille R. P., Harrison S. T. L. (2011). Interference by pigment in the estimation of microalgal biomass concentration by optical density. Journal of Microbiological Methods, 85(2), 119–123. https://doi.org/10.1016/j.mimet.2011.02.005

Downloads

Published

2024-10-10