Differenciális mikrokaloriméter hőmérséklettartományának kiterjesztése alacsony hőmérsékletű felhasználásokhoz

Extending the temperature range of differential microcalorimeters for low temperature applications

Authors

  • HARASZTOSI Lajos
  • SZABÓ István A.
  • KISS Rebeka Gy.
  • BATTISTIG Gábor

Keywords:

microcalorimetry, mems membrane structure, microheaters, signal processing, temperature feedback and control, /, mikrokalorimetria, mems membrán struktúra, mikrofűtőtest, jelfeldolgozás, hőmérséklet visszacsatolás és szabályozás

Abstract

At the Institute of Physics of the University of Debrecen, a microcalorimeter for the measurement of small amounts of samples has been developed [1,2,3]. The calorimeter is suitable for the calorimetric measurement of thin film samples evaporated on a heated MEMS sample holder surface, after proper calibration, and for the determination of specific heat in the temperature range between 80℃ - 300℃. In the present work, we demonstrate how calorimetric measurements can be extended to the lower temperature range of 0℃, thus enabling the measurement of reactions not previously investigated.

Kivonat

A Debreceni Egyetem Fizikai Intézetében kifejlesztésre került egy anyagmennyiségűkis tömegű minták mérésére alkalmas mikrokaloriméter [1,2,3]. A kaloriméter megfelelő kalibrálás után alkalmas a fűthető MEMS mintatartó felületére párologtatott vékonyréteg minták kalorimetrikus mérésére, fajhő meghatározására a 80℃ - 300℃ közötti hőmérséklettartományban. A jelen munkában bemutatjuk, hogy hogyan lehet a kalorimetrikus méréseket kiterjeszteni a 0℃-os alsó hőmérsékletig, így lehetővé téve eddig nem vizsgált reakciók mérését is.

References

L. Harasztosi, I. A. Szabó, F. Biró, R.Gy. Kiss, G. Battistig, Microcalorimeter development and calibration based on a twin micro-heater platform, Proceedings of 8th International Conference on Sensors Engineering and Electronics Instrumentation Advances (SEIA' 2022), Corfu, Greece, 2022

L. Harasztosi, I. A. Szabó, F. Biró, R.Gy. Kiss, G. Battistig, Temperature Calibration of Twin Micro-heater Based Microcalorimeter, Sensors & Transducers, Vol. 260, Issue 1, May 2023, pp. 7-13

R.Gy. Kiss, L. Harasztosi, I. A. Szabó, F. Biró, G. Battistig, Microhotplate as a platform for Calorimetry, Eurosensors Conference, XXXIV, Lecce, Italy,10-13 September2023

A.F. Lopeandia, J. Valenzuela, J. Rodriguez-Viejo, Power compensated thin film calorimetry at fast heating rates, Sensors and Actuators A Physical 143 (Journal Title, Vol. 143, Issue 2, 2008 pp. 256–264.

TY. Gao, B. Zhao, J. J. Vlassak C. Schick, Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibrium conditions Progress in Materials Science Vol 120, 2021. pp. 100819

P.J. McCluskey, J.J. Vlassak, “Combinatorial nanocalorimetry”, J. Mater. Res., 25, (2010) 2086

M. Merzlyakov, “Method of rapid (100 000 K s−1) controlled cooling and heating of thin samples”, Thermochimica Acta 442 (2006) 52–60

A. F. Lopeandía, “Development of Membrane-based Calorimeters to Measure Phase Transitions at the Nanoscale”, Thesis, Grup de Nanomaterials i Microsistemes, Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, May 2007

F. Yi, M.D. Grapes, D.A. LaVan, “Practical Guide to the Design, Fabrication, and Calibration of NIST Nanocalorimeters”, Journal of Research of the National Institute of Standards and Technology, Volume 124, Article No. 124021 (2019)

V. Mathot, M. Pyda, T. Pijpers, G. Vanden Poel, E. van de Kerkhoff, S. van Herwaardeng, F. van Herwaardeng, A. Leenaers, “The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): First findings on polymers”, Thermochimica Acta 522 (2011) 36–45

E. Zhuravlev, C. Schick, “Fast scanning power compensated differential scanning nano-calorimeter: 1. The device”, Thermochimica Acta 505 (2010) 1–13

E. Zhuravlev, C. Schick, “Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis”, Thermochimica Acta, 505, (2010) 14-21

J. Zheng, Y. Miao, H. Zhang, S. Chen, D. Lee, R. Arroyave, J.J. Vlassak, “Phase transformations in equiatomic CuZr shape memory thin films analyzed by differential nanocalorimetry”, Acta Materialia, 159, (2018) 320-331

D. W. Denlinger, E. N. Abarra, Kimberly Allen, P. W. Rooney, M. T. Messer, S. K. Watson, F. Hellman, “Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K”, Rev. Sci. Instrum. 65, (1994) 946

D. Lee, J.J. Vlassak, “Diffusion kinetics in binary CuZr and NiZr alloys in the super-cooled liquid and glass states studied by nanocalorimetry”, Scripta Materialia 165 (2019) 73–77

F. Bíró, Z. Hajnal, I. Bársony, Cs. Dücső, MEMS Microhotplate Constraints, In: Sergey, Y. Yurish (ed.) Advances in Microelectronics: Reviews, Barcelona, Spain: IFSA Europe Group (2019) pp. 49-67.

L. P. Cook, R. E. Cavicchi, M. L. Green, C. B. Montgomery, and W. F. Egelhoff, „Thin‐Film Nanocalorimetry: A New Approach to the Evaluation of Interfacial Stability for Nanoelectronic Applications” AIP Conference Proceedings 931, 151 (2007)

Feng Yi, Michael D. Grapes and David A. LaVan„Practical Guide to the Design, Fabrication, and Calibration of NIST Nanocalorimeters” Journal of Research of the National Institute of Standards and Technology Volume 124, Article No. 124021 (2019)

Downloads

Published

2024-02-23