Elképzelt motoros tevékenységek EEG-alapú osztályozása neurális hálózatok használatával

EEG-based classification of motor imagery activities using neural networks

Authors

  • MAJOROS Tamás
  • ONIGA István László

Keywords:

EEG, neural network, classification, activity recognition, data segmentation, neurális hálózat, osztályozás, tevékenységfelismerés, adatszegmentálás

Abstract

EEG-based classification of motor imagary activities is often performed using neural networks. In this article, we examined the effect of data segmentation and different neural network structures. By applying proper window size and using a purely convolutional neural network, we achieved 97.7% recognition accuracy on data from twenty subjects in three classes, which outperforms several networks used in previous research.

Kivonat

Az elképzelt motoros tevékenységek EEG-alapú osztályozását gyakran neurális hálózatok segítségével végzik. Ebben a cikkben az adatszegmentáció és különböző neurális hálózati struktúrák hatását vizsgáltuk. Megfelelő ablakméret alkalmazásával és egy tisztán konvolúciós neurális háló használatával 97,7%-os felismerési pontosságot értünk el húsz alany adatain három osztályban, ami több, a korábbi kutatásokban használt hálózatot felülmúl.

References

Sanei, S.; Chambers, J.A. EEG Signal Processing; Wiley: Oxford, UK, 2007; ISBN-13: 9780470025819.

Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. arXiv 2018, arXiv:1703.05051v5.

Krishna, D.H.; Pasha, I.A.; Savithri, T.S. Classification of EEG Motor Imagery Multi Class Signals Based on Cross Correlation. Procedia Comput. Sci. 2016, 85, 490–495.

Chen, Z.; Wang, Y.; Song, Z. Classification of Motor Imagery Electroencephalography Signals Based on Image Processing Method. Sensors 2021, 21, 4646.

Wu, Y.-T.; Huang, T.H.; Lin, C.Y.; Tsai, S.J.; Wang, P.-S. Classification of EEG Motor Imagery Using Support Vector Machine and Convolutional Neural Network. In Proceedings of the2018 International Automatic Control Conference (CACS), Taoyuan, Taiwan, 10 January 2019.

León, J.; Escobar, J.J.; Ortiz, A.; Ortega, J.; González, J.; Martín-Smith, P.; Gan, J.Q.; Damas, M. Deep learning for EEG-based Motor Imagery classification: Accuracy-cost trade-off. PLoS ONE 2020, 15, e0234178.

Wang, Z.; Cao, L.; Zhang, Z.; Gong, X.; Sun, Y.; Wang, H. Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition. Concurr. Comput. Pract. Exp. 2018, 30, e4413.

Behri, M.; Subasi, A.; Qaisar, S.M. Comparison of machine learning methods for two class motor imagery tasks using EEG in brain-computer interface. In Proceedings of the 2018 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 11 June 2018.

Jia, H.; Wang, S.; Zheng, D.; Qu, X.; Fan, S. Comparative study of motor imagery classification based on BP-NN and SVM. J. Eng. 2019, 2019, 8646–8649

Craik, A.; He, Y.; Contreras-Vidal, J.L. Deep learning for electroencephalogram (EEG) classification tasks: A review. J. Neural Eng. 2019, 16, 031001

Schalk, G.; McFarland, D.J.; Hinterberger, T.; Birbaumer, N.; Wolpaw, J.R. EEG Motor Movement/Imagery Dataset. Available online: https://physionet.org/content/eegmmidb/1.0.0/ (Utolsó letöltés: 2021.06.12.)

Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R.B.; Wang, H. A Sliding Window Common Spatial Pattern for Enhancing Motor Imagery Classification in EEG-BCI. IEEE Trans. Instrum. Meas. 2021, 70, 1–9.

Blanco-Mora, D.; Aldridge, A.; Jorge, C.; Vourvopoulos, A.; Figueiredo, P.; Bermúdez i Badia, S. Finding the Optimal Time Window for Increased Classification Accuracy during Motor Imagery. In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, Vienna, Austria, 11–13 February 2021; pp. 144–151.

Saha, S.; Baumert, M. Intra- and Inter-subject Variability in EEG-Based Sensorimotor Brain Computer Interface: A Review. Front. Comput. Neurosci. 2020, 13, 87.

Altuwaijri, G.A.; Muhammad, G. A Multibranch of Convolutional Neural Network Models for Electroencephalogram-Based Motor Imagery Classification. Biosensors 2022, 12, 22.

Huang, W.; Chang, W.; Yan, G.; Yang, Z.; Luo, H.; Pei, H. EEG-based motor imagery classification using convolutional neural networks with local reparameterization trick. Expert Syst. Appl. 2022, 187, 115968.

Lun, X.; Liu, J.; Zhang, Y.; Hao, Z.; Hou, Y. A Motor Imagery Signals Classification Method via the Difference of EEG Signals between Left and Right Hemispheric Electrodes. Front. Neurosci. 2022, 16, 865594.

Published

2022-10-12