Kétrétegű fémes kompozit lemez hengerlési technológiájának kidolgozása szénacél rendszerek hidrogénállóságának javítása szempontjából

Development of a double-layer metallic composite plate rolling technology to improve the hydrogen resistance of carbon steel systems

Authors

  • SZABÓ Gábor
  • KÁRPÁTI Viktor
  • PUSKÁS Csaba Sándor
  • VESZPRÉMI Ramóna
  • PALKOVICS Miklós

Keywords:

hidrogén, Cantor ötvözet, nagy entrópia, bevonat, plattírozás

Abstract

In this research work, we focused on the feasibility of producing 2-ply composite plates by rolling. The aim of the investigation was to develop an optimal rolling technology for the application of a high entropy alloy in the solid state on the surface of a steel of S355J+N grade. The cladding technology and the corresponding temperature conditions and piercing patterns were developed during the bond rolling process. These were optimised and finally an experimental production technology was established which was considered ideal. Our investigation focused on the dimensions of the laboratory equipment.

 

References

] P. Csató és G. Óvári, A hidrogén felhasználásának jelene és jövője a repülésben, Rep-TudKoz, köt. 34, sz. 3, o. 59–76, júl. 2023.

] R. Sengupta, Hydrogen as Aviation Fuel: Opportunities & Challenges, Journal of Ae-rospace Engineering & Technology, 2019.

] A. Ghafourian és N. Ehsan, A Review on Aviation Industry Emissions and Potential Mit-igation Strategies, International Journal of Aerospace Engineering, 2020.

] J. Whitelegg és R. Bosworth, Hydrogen in Aviation: Fuelling the Future? The Aeronautical Journal, 2021.

] J.P. Neeft, Hydrogen Fuel in Aviation, Aerospace America, 2020.

] J.W. Yeh, S.K. Chen, S.J. Lin et al., A critical review of high entropy alloys and related concepts, Acta Materialia, 2004.

] D.B. Miracle és O.N. Senkov, Current understanding of the structure and properties of high entropy alloys, Journal of Materials Research, 2017.

] Y. Zhang, Y.J. Zhou, J.P. Lin et al., High-entropy alloys: A critical assessment of their founding principles and future prospects, Intermetallics, 2018.

] B.S. Murty, J.W. Yeh, S. Ranganathan, High-entropy alloys by mechanical alloying: A review, Critical Reviews in Solid State and Materials Sciences, 2010.

] Y. Zhang, T.T. Zuo, Z. Tang et al., Recent advances in high-entropy alloys, Progress in Materials Science, 2014.

] Saro, Ching Wai-Yim, Subtle Variations of the Electronic Structure and Mechanical Pro-perties of High Entropy Alloys With 50% Carbon Composites, Frontiers in Materials, vol. 7, 2020.

] X.H. An, W.W. Wu, W.M. Wang, et al., "High-entropy alloy coatings: A review," Journal of Alloys and Compounds, vol. 819, 153084, 2020.

] Y.F. Kao, Y.C. Chen, S.J. Lin, et al., "Development and characterization of high-entropy alloy coatings on steel substrate," Surface and Coatings Technology, vol. 283, pp. 384-392, 2015.

] J.W. Yeh, S.K. Chen, S.J. Lin, et al., "High-entropy alloy coatings: Recent developments and prospects," Current Opinion in Solid State and Materials Science, vol. 25, no. 4, pp. 100922, 2021.

] C.S. Chien, S.K. Chen, J.W. Yeh, "Properties and applications of high-entropy alloy coat-ings: A review," Materials Science and Engineering: A, vol. 754, pp. 55-75, 2019.

] M.C. Gao, J.W. Yeh, P.K. Liaw, "High entropy alloy (HEA) thin film materials: Progress and challenges," Current Opinion in Solid State and Materials Science, vol. 20, no. 6, pp. 319-328, 2016.

Downloads

Published

2024-04-03