Az emberi mozgás követése és felismerése

Human motion tracking and recognition

  • VAJDA Tamás
Keywords: mozgás követése, inerciális szenzor, képfeldolgozás

Abstract

From the entertainment industry to healthcare, there is a need to track and recognize human movement. As a result, a lot of scientist are researching and developing methods to track and recogniz human motion. In this article, we present the most relevant methods used to track human movement and discuss their advantages and disadvantages.

Kivonat

A szórakoztató ipartól egészen az egészségügyig szükség van arra, hogy az emberi mozgást kövessük és felismerjük. Ennek eredményeképpen rengeteg kutató foglalkozik olyan módszerek kifejlesztésével, amelyeknek a célja az emberi mozgás követése és felismerése. Ebben a cikkben bemutatjuk azokat a főbb módszereket, amelyeket emberi mozgás követésére használunk, valamint kitérünk ezeknek a hátrányaira és előnyeire.

 

References

Fortino, G.; Giannantonio, R.; Gravina, R.; Kuryloski, P.; Jafari, R. Enabling effective programming and flexible anagement of efficient body sensor network applications. IEEE Trans. Hum.-Mach. Syst. 2013, 43, 115–133.

Chen, M.; Gonzalez, S.; Vasilakos, A.; Cao, H.; Leung, V.C. Body area networks: A survey. Mob. Netw. Appl. 2011, 16, 171–193.

Himani S. Parekh, Darshak G. Thakore , Udesang K. Jaliya “A Survey on Object Detection and Tracking Methods”, International Journal of Innovative Research in Computer and Communication Engineering ,Vol. 2, Issue 2, February 2014.

P. Bilinski, F. Bremond, and M. Kaaniche. Multiple object tracking with occlusions using HOG descriptors and multi resolution images. In The International Conference on Imaging for Crime Detection and Prevention (ICDP), London, UK, 2009.

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In The Proceedingof The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 511–518, April 2003.

Shraddha KothiyaKinjal, MistreeKinjal Mistree A review on real time object tracking in video sequences, Conference: 2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO) 2015

Mrinali M. Bhajibhakare, Pradeep K. Deshmukh, To Detect and Track Moving Object for Surveillance System, International Journal of Innovative Research in Computer and Communication Engineering, Vol. 1, Issue 4, June 2013.

Nishu Singla Motion Detection Based on Frame Difference Method International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 15 (2014)

Rahul Mishra, Mahesh K. Chouhan, Dr. Dhiiraj Nitnawwre, “Multiple Object Tracking by Kernel Based Centroid Method for Improve Localization”, International Journal of Advanced Research in Computer Science and Software Engineering, July-2012, pp 137-140.

Denis Fortun, Patrick Bouthemy, Charles Kervrann. Optical flow modeling and computation: a survey. Computer Vision and Image Understanding, Elsevier, 2015, 134, pp.21

Zhang Z.Q., Wu J.K. A novel hierarchical information fusion method for three-dimensional upper limb motion estimation. IEEE Trans. Instrum. Meas. 2011;60:3709–3719.

Ahmad N., Ghazilla R.A.R., Khairi N.M., Kasi V. Reviews on various inertial measurement unit (IMU) sensor applications. Int. J. Signal Proc. Syst. 2013;1:256–262. doi: 10.12720/ijsps.1.2.256-262.

Patel S., Park H., Bonato P., Chan L., Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012;9:21. doi: 10.1186/1743-0003-9-21

Gravina R., Alinia P., Ghasemzadeh H., Fortino G. Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Inf. Fusion. 2017;35:68–80. doi: 10.1016/j.inffus.2016.09.005

Picerno P., Cereatti A., Cappozzo A. Joint kinematics estimate using wearable inertial and magnetic sensing modules. Gait Posture. 2008;28:588–595. doi: 10.1016/j.gaitpost.2008.04.003

To G., Mahfouz M.R. Quaternionic Attitude Estimation for Robotic and Human Motion Tracking Using Sequential Monte Carlo Methods with von Mises-Fisher and Non Uniform Densities Simulations. IEEE Trans. Biomed. Eng. 2013;60:3046–3059. doi: 10.1109/TBME.2013.2262636.

Wang J.J., Wang J., Sinclair D., Watts L. A neural network and Kalman filter hybrid approach for GPS/INS integration; Proceedings of the 12th IAIN World Congress, 2006 International Symposium on GPS/GNSS; Jeju, Korea. 18–20 October 2006; pp. 18–20.

Pons-Moll G., Baak A., Gall J., Leal-Taixe L., Muller M., Seidel H., Rosenhahn B. Outdoor human motion capture using inverse kinematics and von mises-fisher sampling; Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV); Barcelona, Spain. 6–13 November 2011; pp. 1243–1250.

Luinge H.J., Veltink P.H., Baten C.T. Ambulatory measurement of arm orientation. J. Biomech. 2007;40:78–85. doi: 10.1016/j.jbiomech.2005.11.011

. Peppoloni L., Filippeschi A., Ruffaldi E., Avizzano C.A. A novel 7 degrees of freedom model for upper limb kinematic reconstruction based on wearable sensors; Proceedings of the 2013 IEEE 11th International Symposium on Intelligent Systems and Informatics (SISY); Subotica, Serbia. 26–28 September 2013; pp. 105–110.

Cutti A.G., Giovanardi A., Rocchi L., Davalli A., Sacchetti R. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med. Biol. Eng. Comput. 2008;46:169–178. doi: 10.1007/s11517-007-0296-5

Zhang Z.Q., Wong W.C., Wu J.K. Ubiquitous human upper-limb motion estimation using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2011;15:513–521. doi: 10.1109/TITB.2011.2159122.

Mihelj M. Inverse kinematics of human arm based on multisensor data integration. J. Intell. Robot. Syst. 2006;47:139–153. doi: 10.1007/s10846-006-9079-8.

Published
2020-10-06