Poliamid 6 mátrixú, halloysittel és bazaltszállal erősített nano- és hibridkompozitok húzási jellemzőinek modellezése

Modeling the tensile properties of halloysite and basalt fiber reinforced polyamide 6 nano- and hybrid composites

BEZERÉDI Ádám¹ MSc hallgató, **PETRÉNY Roland**¹ PhD hallgató, **Dr. MÉSZÁROS László**^{1,2} egyetemi docens

¹Budapesti Műszaki és Gazdaságtudományi Egyetem, Gépészmérnöki Kar, Polimertechnika Tanszék, 1111, Budapest, Műegyetem rkp. 3., T épület III. emelet, tel: 06-1-463-1056, fax: 06-1-463-1527, e-mail: <u>meszaros@pt.bme.hu</u>, www.pt.bme.hu

² ELKH-BME Kompozittechnológia Kutatócsoport, 1111 Budapest, Műegyetem rkp. 3., T épület III. emelet, tel: 06-1-463-1056, fax: 06-1-463-1527, e-mail: <u>meszaros@pt.bme.hu</u>, www.pt.bme.hu/kutato

Abstract

Polyamide 6 (PA6) – due to its excellent thermal and chemical resistant properties – is a commonly used engineering plastic, e.g., in the automotive industry as the material of gears, bearings, and other engine compartment parts [1,2]. Despite the great nature of this semi-crystalline polymer, we strive to improve certain mechanical properties of PA6 by producing composites using reinforcing materials. An applicable method is by using nanoparticles – in our case, halloysite nanotubes (HNT) – which have a high surface/volume ratio, so there is a large surface for the adhesion between the matrix and the reinforcing material to be formed [3]. Applying both HNT and basalt fiber (BF) helps to distribute the nanotubes in the composite [4]. Mechanical design is essential for practical applicability. In order to achieve this, the fiber bundle cell theory was applied, which provides a link between the microstructure and macroscopic mechanical properties of PA6 matrix, HNT, and BF-reinforced hybrid composites.

Keywords: polyamide, nanocomposite, hybrid composite, basalt fiber, halloysite, fiber bundle cell theory

Kivonat

A poliamid 6 (PA6) kiváló mechanikai és termikus, valamint vegyszerállósági tulajdonságainak köszönhetően többek között a járműiparban is gyakran alkalmazott műszaki műanyag, mind fogaskerekek és csapágyak, mind motortéri alkatrészek alapanyagaként [1,2]. Ezen részben kristályos polimer kiváló tulajdonságainak ellenére törekszünk kompozitok előállítása révén tovább javítani a PA6 egyes mechanikai jellemzőit, erősítőanyagok használatával. Ennek egyik módja a nanorészecskék – esetünkben halloysit nanocsövek (HNT) – alkalmazása, amelyek nagy felület-térfogat aránnyal rendelkeznek, így nagy a mátrixanyaggal kialakuló kapcsolatra alkalmas felület [3]. A HNT mellett bazaltszál (BF) alkalmazása segíti a nanocsövek eloszlatását az így létrehozott hibridkompozitban [4]. A gyakorlati alkalmazhatósághoz elengedhetetlen a mechanikai tervezhetőség. Ennek eléréséhez a szálkötegcella elméletet alkalmaztuk, amely kapcsolatot teremt a PA6 mátrixú, HNT és BF erősítésű hibridkompozitok mikroszerkezete és a makroszkopikus mechanikai tulajdonságai között.

Kulcsszavak: poliamid, nanokompozit, hibridkompozit, bazaltszál, halloysit, szálkötegcella elmélet

1. Bevezetés

A műszaki életben széles körben felhasznált, a poliamidok családjába tartozó poliamid 6 (PA6), kompozitok mátrixanyagaként is alkalmazható, hőre lágyuló műszaki műanyag. Kiváló mechanikai, termikus, és vegyszerállósági tulajdonságai mellett, tömeggyártásra alkalmas technológiákkal való feldolgozhatósága is hozzájárul a műanyagipari alkalmazásokban való elterjedéséhez [1].

A PA6 kedvező tulajdonságai jól kihasználhatók kompozitokban is, amelyek előállításakor a mátrixanyagnál nagyobb szilárdságú, mikro- és nanoméretű erősítőanyagokat alkalmazunk, amelyek kiváló adhéziós kapcsolatban állnak a mátrixanyaggal és növelik a teljes kompozit mechanikai igénybevételekkel szembeni ellenállóságát. Nanorészecskék alkalmazása során tekintettel kell lennünk arra, hogy azok rendkívül kis méretéből és magas fajlagos felületéből adódóan hajlamosak aggregátumok képzésére, tehát nem kerül a teljes felületük kapcsolatba a mátrix anyaggal, így ezek a helyek lokálisan gyengítik a nanokompozitot, ezért hibahelyek lesznek a kompozitokban, ami korai tönkremenetelhez vezethet [4]. Ennek elkerülése érdekében a nanorészecskék mellett mikroszálakat is alkalmazunk. Az így létrehozott hibridkompozitban a mikroszálak növelik a feldolgozás során ébredő nyíróerőket, ezzel segítve a nanorészecskék mátrixanyagban való eloszlatottságát [5].

A nanoméretű erősítőanyagok közül kiemelkedik a halloysit agyagásvány, amely egy a természetben megtalálható, a kaolinitek családjába tartozó csőszerű nanorészecske. Ezen üreges nanocsövek méretei széles határok között mozoghatnak, belső átmérőjük jellemzően 1-30 nm, külső átmérőjük 30-50 nm, hosszuk pedig 100-2000 nm. A nanocsöveket felcsavarodott lemezek alkotják, melyek belső felülete aluminol, külső pedig sziloxán. Ezek a felületek eltérő polaritással rendelkeznek. Nanokompozitok esetén fontos az erősítőanyagok aggregálódásra hajlamos természetét tekintve, a nanocsövek diszpergálhatósága, amelyet nagyban elősegít a halloysit csövek külső felületén lévő sziloxán réteg [3].

Fröccsöntött kompozitok erősítőanyagaként gyakran alkalmazzák a vágott bazaltszálat (BF), amelynek alapja természetes vulkanikus kőzet. Az alapanyag természetéből adódóan jóval gazdaságosabb, valamint környezetkímélőbb a mesterséges erősítőszálaknál (pl.: szénszál), mivel nagy mennyiségben fellelhető, illetve bányászata és feldolgozása nem igényel túl sok technológiai lépést (felszíni bányászat, bazaltkőből közvetlenül bazaltszál megolvasztással) [6]. A bazaltszál hibridkompozitban való alkalmazása megnöveli a feldolgozás során ébredő nyíróerőket, ezzel a HNT-k nagyobb fokú eloszlatottságát eredményezve [5].

A mátrixanyag és az erősítőanyag közötti funkciómegosztás lényege, hogy a mátrixanyag átadja és elosztja az erősítőanyag részecskéi, illetve szálai között a rá ható terhelést. Ezért a kompozit terhelhetőségének határát főként a benne levő erősítőanyag terhelhetőségének határa, illetve a köztük lévő határfázis határozzák meg. Az erősítőanyagok határfelületén kialakult kémiai és fizikai kötődés mellett, a határfázisok vastagsága, szerkezete és összetétele is hatással vannak a mátrix-erősítőanyag kapcsolatra, így a kompozit makroszkópikus tulajdonságaira is.

Feltételezésünk szerint, ha a molekulaláncok közé – nanoerősítőanyagok használatával – nagy modulusú anyagot juttatunk, akkor a kialakult határfelületi kölcsönhatás miatt, gátolt a molekulaszegmensek mozgása. Rideg amorf határfázis (RAF) jön létre abban az esetben, ha a mátrix amorf részeiben lévő molekulaszegmensek az erősítőanyagokhoz vagy a kristályos részekhez kapcsolódnak, ezzel csökkentve a polimer molekulák mozgékonyságát. Másik esetben, ha az erősítőanyagok kristálygócképzőként viselkednek, akkor azokat kristályos részek veszik körül, a kristályos részeket pedig rideg amorf fázis, amelyek az úgynevezett mobil amorf molekularészekbe (MAF) vannak beágyazva. A határfázisok szerkezete és saját mechanikai tulajdonságai minden esetben befolyásolják a kompozit makroszkopikus jellemzőit is. [7].

A kompozitokban jelenlévő különböző fázisok mechanikai tulajdonságokra gyakorolt hatásainak egyik lehetséges modellezési módszere a szálkötegcella-elmélet. Az elmélet alkalmazásának előnye, egyszerű használata mellett, hogy figyelembe veszi az egyes szálkötegek olyan statisztikai jellemzőit, mint a szálkötegek nyúlásának várható értékei, illetve azok négyzetes szórásai. A próbatesteken végzett húzóvizsgálatokból kapott, átlagolt erő-elmozdulás görbéket dekomponáljuk, és az így kapott egyes szakítógörbe-komponenseket megfeleltetjük az egyes fázisok szakítógörbéinek. Ezáltal modellt alkothatunk az egyes fázisok teherviselésben és a tönkremenetelben betöltött szerepéről [8]. Az elmélet alkalmazásával célunk, hogy modellezni tudjuk a PA6 mátrixú, halloysit és bazaltszál erősítésű hibridkompozitok mikroszerkezete és a makroszkopikus mechanikai tulajdonságai közötti összefüggéseket.

2. Alkalmazott anyagok és berendezések

A kutatás során vizsgált nano- és hibridkompozitok az alábbi 1. táblázatban feltüntetett erősítőanyagtartalommal rendelkeztek.

HNT tömeg%	0	1	2	3	0	1	2	3
BF tömeg%	0	0	0	0	30	30	30	30

1. táblázat: A vizsgált nano-és hibridkompozit minták erősítőanyag tartalma

A szakító vizsgálat Zwick-Z005 szakítógépen, MSZ EN ISO 527-1:2012 szabvány szerint végeztük. A 1. táblázatban feltüntetett összetételek szerint 5-5 mintán történt a párhuzamos mérés, amelynek előterhelési sebessége minden esetben 1 mm/perc, szakítási sebessége pedig 5 mm/perc volt.

Az anyagok fázisszerkezetének feltárásához kalorimetriai vizsgálatokat végeztünk. A differenciális pásztázó kalorimetriai (DSC) mérés elvégzéséhez egy TA Instruments DSC Q2000 berendezést használtunk. A mintákat 0°C és 250°C közötti hőmérséklet tartományban, két felfűtési és egy hűtési ciklussal vizsgáltuk. A felfűtés és lehűtés sebessége egyaránt 5°C/perc volt. A DSC vizsgálat után a gép által szolgáltatott adatokat TA Universal Analysis program segítségével értékeltük ki.

3. Az eredmények kiértékelése

A szálköteg cella elmélet hatékonyan alkalmazható szálas szerkezetek mechanikai tulajdonságainak modellezésére, és a hőre lágyuló mátrixanyagú kompozitok ilyennek tekinthetők, mert láncmolekulákból álló lineáris polimert és erősítőszálakat tartalmaznak.

A különböző szálkötegek húzóigénybevételre adott sztochasztikus válaszai várhatóérték folyamattal írhatók le. Így a szálkötegcellák eredő húzóerő-nyúlás függvénye [8]:

$$\sigma_{m\acute{e}rt}(\varepsilon) \approx \sigma_{modell}(\varepsilon) = \sum_{i=1}^{n} \sigma_i(\varepsilon) \cdot R_i(\varepsilon) \cdot p_i \tag{1}$$

ahol $\sigma_i(\varepsilon)$ az *i*-edik szálköteg húzókarakterisztikája, $R_i(\varepsilon)$ a szálköteg megbízhatósági függvénye, p_i a szálköteg térfogataránya (térfogat%), *n* szálkötegek száma, ε pedig a nyúlás.

A modell paraméterei közül a mobil (MAF) - és ridegamorf (RAF), valamint a kristályos fázisarány meghatározásához DSC vizsgálatot végeztünk. A görbe üveges átmenete során megjelenő fajhőnövekmény alapján számíthatjuk a mobil-, majd a ridegamorf fázisok tömegarányait. A kristályos fázis tömegarányát a kristályolvadási entalpia alapján határozzuk meg. Ezután – ahol szükséges az erősítőszálak mennyiségét is figyelembe véve – térfogatarányt számítunk, ezzel megkapva a modellfüggvényben az egyes szálkötegek súlyát jellemző (p_i) paramétert.

Szálkötegek húzókarakterisztikáját leíró összefüggés $\sigma_i(\varepsilon) = a_i(1 - \varepsilon^{-b_i \cdot \varepsilon}) + c_i \cdot \varepsilon$ (2)

amely a Standard-Solid modell sebesség ugrás gerjesztésre adott válasza szakítóvizsgálat esetén. Az egyenletben szereplő paraméterek meghatározása a következő:

 a_i paraméter a kötegek feszítettségét jellemzi. Amennyiben $a_i = 0$ a szálkötegek egyenesek, de nem előfeszítettek, így a húzóerő görbén lineárisan rugalmas jelleget figyelhetünk meg. Ha $a_i < 0$, akkor a szálkötegek hullámosak, csak kiegyenesedésük után fejtik ki erősítő szerepüket, így a görbe alulról konvex. $a_i > 0$ abban az esetben áll fenn, ha a szálkötegek előfeszítettek, ilyenkor a felfutó szakasz alulról konkáv. Amennyiben szálkötegek kicsúsznak rögzített helyzetükből, csúszó-köteg is kialakíthatnak [9].

A húzóerő görbe felfutó szakaszának görbületét a b_i paraméter befolyásolja, amely az anyag viszkoelasztikus viselkedését jellemző paraméter.

 c_i a görbe kezdeti szakaszának meredekségét írja le, azaz a szálak kezdeti húzómerevségét. A mátrixanyagban lévő mobil amorf, rideg amorf és kristályos fázisok modulusainak (2. táblázat) meghatározása egy korábbi kutatás során atomerő-mikroszkóppal végzett, erő-benyomódás méréssel történt [11.].

Köteg	E (GPa)
MAF	2,96
RAF	4,41
Xe	4,56
HNT	140
BF	89

2. táblázat A szálkötegek rugalmassági modulusa

Szálkötegek megbízhatósági függvénye:

$$R_i(\varepsilon) = 1 - Q_i(\varepsilon, M_i, D_i^2)$$
(3)

ahol \boldsymbol{Q}_i – a szálak szakadási nyúlásának normáleloszlásfüggvénye

$$Q_i(\varepsilon) = \int_{-\infty}^x \frac{1}{D_i \sqrt{2\pi}} \cdot e^{-\frac{(t-M_i)^2}{2\sigma^2}} dt \left(= \int_{-\infty}^x f(t) dt\right)$$
(4)

ahol M_i az *i*-edik szálköteg szakadási nyúlásának várható értéke, D_i^2 pedig a négyzetes szórás.

Relatív átlagos négyzetes hiba (RÁNH) (megadja a modellillesztés jóságát, akkor jó, ha RÁNH < 5%):

$$RANH = \frac{\sqrt{\frac{1}{N}H^2(n,p,a,b,c,M_i,D_i)}}{\max_{1 \le j \le N} \sigma_{mert}(\varepsilon_j)}$$
(5)

ahol N az adatok száma a, b, c, M_i, D_i a paraméterek vektorai, H^2 pedig a négyzetes hiba.

A vizsgált nano-és hibridkompozitok húzási jellemzőinek modellezéséhez, a mintánként 5-5 párhuzamos szakító vizsgálat eredményeiből származó átlagolt szakítógörbéket (1. ábra (a), (b)) alkalmaztuk.

1. ábra A a) bazaltszállal nem erősített és b) bazaltszállal erősített minták átlagolt szakítógörbéinek összehasonlítása

A modellben a kristályos, valamint rideg- és mobil amorf szálkötegek súlyainak (p) meghatározásához DSC mérést végeztünk, amely során meghatároztuk ezen három fázis tömegarányát a mátrixra vonatkoztatva (3. táblázat). Ezeket az eredményeket a modellben való alkalmazhatósághoz a kompozitokra jellemző térfogatarányokra számítottuk át.

A keresett fázisarányok mennyiségének meghatározására a következő összefüggéseket alkalmaztuk. Kristályos részarány (a mátrixra vonatkoztatva):

$$X_c = \frac{\Delta H_m}{\Delta H_0 (1 - v_{f,wt})} \cdot 100 \,(\%) \tag{6}$$

ahol $v_{f,wt}$ a száltartalom (wt%), X_c a kristályos részarány, ΔH_m a kristályolvadási entalpiaváltozása, ΔH_0 a kristályolvadás entalpiaváltozása 100% kristályos részarány esetén. A PA6 kristályolvadás entalpiaváltozása 100% kristályos részarány esetén 240 $\left(\frac{J}{a}\right)$. [10]

Mobil amorf fázis arány (a mátrixra vonatkoztatva):

$$MAF = \frac{\Delta c_p}{\Delta c_{p0}} \cdot 100 \ (\%) \tag{7}$$

(8)

ahol Δc_p a minta mért üveges átmeneti fajhőnövekménye $\left(\frac{J}{g \cdot c}\right)$, Δc_{p0} a teljesen amorf anyag üveges átmeneti fajhőnövekménye $\left(\frac{J}{g \cdot c}\right)$.

Teljesen amorf anyag üveges átmeneti fajhőnövekménye PA6 esetén 0,475 $\left(\frac{J}{g^{.\circ}C}\right)$ [7] Rideg amorf fázis tömegarány (a mátrixra vonatkoztatva): RAF = 1 - MAF (%) $- X_c$

Minta	wt% _{BF}	wt% _{HNT}	ΔH_m (J/g)	c_p (J/g·°C)	Xc (wt%)	MAF (wt%)	RAF (wt%)	T _m (°C)
PA_ref	0	0	59,1	0,21	24,6	43,3	32,1	220,7
PA_H1	0	1	58,0	0,20	24,4	41,2	34,3	221,2
PA_H2	0	2	49,4	0,18	21,0	36,8	42,2	221,6
PA_H3	0	3	59,8	0,19	25,7	39,5	34,8	220,7
PA_BF	30	0	41,6	0,16	24,7	33,5	41,8	221,6
PA_BF_H1	30	1	44,2	0,11	26,7	23,9	49,5	222,2
PA_BF_H2	30	2	43,7	0,12	26,8	24,6	48,6	220,9
PA_BF_H3	30	3	42,2	0,15	26,2	30,7	43,1	221,8

3. táblázat A DSC mérés eredményei, valamint azokból számított mennyiségek összefoglalása

A modell alkalmazásával kapott illesztett görbék alapján láthatjuk (2.ábra (a), (b)), hogy míg a szakítószilárdságot leginkább a kristályos (Xc), az alkalmazott nanocsövek (HNT), illetve a rideg amorf (RAF) részt jellemző szálköteg, addig a tönkremenetel folyamatát a mobil amorf szálköteg (MAF) írja le. A mobil amorf (MAF) szálköteg molekulaláncai el tudnak csúszni, ezért nagyobb nyúlásnál szakadnak el. A húzószilárdságot a nanorészecskék és a határfázisok együtt határozzák meg, ami erős mátrix-erősítőanyag kapcsolatra utal.

2. ábra: Az illesztett modellfüggvények a vizsgált kompozit minták esetén (PA6 (a), PA6+1wt%HNT (b), PA6+30wt%BF (c), PA6+30wt%BF+1wt%HNT (d))

A HNT tartalom növelésével a szakadási nyúlás csökkenését figyelhetjük meg, amelynek oka a halloysit tartalom növelésével, a megjelenő aggregátumok számának növekedése is.

XXXI. Nemzetközi Gépészeti Találkozó

A bazaltszállal erősített mintákban (2. ábra (c), (d)) a bazaltszál a görbe felfutó szakaszának meredekségére való hatása mellett, a RAF szálköteg szintén növekvő hatását láthatjuk a szakítószilárdság alakulásának tekintetében. Ez utóbbi minták tönkremenetelének elnyúlásában azonban egyik szálköteg szerepe sem mondható ki egyértelműen, mivel nem látható szignifikáns változás a halloysit tartalom mennyiségének változtatásával.

4. Összefoglalás

A szálkötegcella-elméletet sikeresen alkalmaztuk a vizsgált nano- és hibridkompozitok makroszkopikus mechanikai tulajdonságainak tervezhetőségének bemutatására, valamint az elvégzett morfológiai vizsgálatok eredményei sikeresen járultak hozzá a modellillesztés pontosságának növeléséhez. A szakítógörbék szálkötegekre való dekomponálásával láthattuk az egyes szálkötegek hatását a szakítógörbék felfutó, illetve tönkremeneteli szakaszára. A szakítószilárdságot a kristályos (X_c) és – bazaltszállal erősített mintákban – a BF szálkötegek írják le leginkább. A tönkremenetel elnyúlását tekintve, a bazaltszállal nem erősített kompozitokban leginkább a halloysit és a mobil amorf fázisok (MAF) játszották a legnagyobb szerepet.

5. Kösztönetnyilvánítás

A kutatás az Innovációs és Technológiai Minisztérium ÚNKP-22-5 kódszámú Új Nemzeti Kiválóság Programjának szakmai támogatásával, valamint az MTA Bolyai János Kutatási Ösztöndíj támogatásával készült.

Irodalmi hivatkozások

- [1] Biron, M.: *Thermoplastic Composites*, Thermoplastics and Thermoplastic Composites; Elsevier, (2018); pp. 821–882.
- [2] Suresha, B.; Halliyavar, D. N.: *Effects of Basalt Fiber and Zirconia Loading on Physico-Mechanical Behavior of PA66/HDPE Blend Composites*. Materials Today: Proceedings, 1442–1451 (2018).
- [3] Jasinski, E.; Bounor-Legaré, V.; Taguet, A.; Beyou, E.: *Influence of halloysite nanotubes onto the fire properties of polymer based composites: A review.* Polym Degrad Stab (2021), *183.*
- [4] Halász I. Z.; Hajdu S. M.; Bárány T.; Karger-Kocsis J.: Újfajta nanoerősítőanyagokkal töltött elasztomer-mátrixú nanokompozitok. Polimerek, , 170–174 (2016).
- [5] Czvikovszky T.; Nagy P.; Gaál J.: A polimertechnika alapjai, Műegyetemi Kiadó: Budapest, (2007).
- [6] Griger B. Gy.; Nyári Sz.; Sántha P.; Tamás-Bényei P.: *Bazaltszálas polimer kompozitok hőpajzsként történő alkalmazhatóságának elemzése*. Polimerek, , 302–308 (2021).
- Petrény, R.; Almásy, L.; Mészáros, L.: Investigation of the interphase structure in polyamide 6-matrix, multiscale composites. Composites Science and Technology, 225, 109489 (2022). http://doi.org/10.1016/j.compscitech.2022.109489.
- [8] Horváth A; Petrény R; Mészáros L; Vas L: A szálkötegcella-elmélet alkalmazása szénszállal és szén nanocsővel erősített PLA kompozitok szerkezeti modellezésére. Polimerek, , 259–264 (2022).
- [9] Vas, L. M.; Göktepe, F.; Tamás, P.; Halász, M.; Palicska, L. K.: *Fiber-bundle-cells model of tensile testing fabric samples*. 4th ITMC LILLE METROPOLE 2013 INTERNATIONAL CONFERENCE, October 9-11, 2013, ENSAIT, Roubaix, FRANCE, 2013.
- [10] Fornes, T. D.; Paul, D. R.: Crystallization behavior of nylon 6 nanocomposites. Polymer, 44, 3945–3961 (2003). http://doi:10.1016/S0032-3861(03)00344-6.
- [11] Horváth A., A mikroszerkezet és mechanikai tulajdonságok közötti összefüggések vizsgálata szénszállal és szén nanocsővel erősített politejsav kompozitokban, diplomamunka, Budapest Műszaki és Gazdaságtudományi Egyetem, 2022.