

Synthesis, photophysical properties and electronic structure of symmetrical substituted curcumin analogues and their BF₂ complexes

Emese Gál¹, Levente Csaba NAGY¹

¹Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Cluj-Napoca, Arany János Street, No. 11. emese.gal@ubbcluj.ro

Symmetrically substituted curcumin analogues, compounds with electron donor moieties at both ends of the conjugated systems, and their difluoroboron complexes were synthesized, and their structures were fully characterized. Complexation with BF₂ resulted a bathochromic shift both in the absorption and emission spectra, indicating that the π -conjugation was more extended than the one in the initial compounds. The solvatochromic effect were studied, in case of phenothiazinyl-curcumin BF₂ complex was the most notably. A novel compound with enhanced photophysical properties, bearing phenothiazine moieties, is reported. Theoretical study of the investigated compounds was carried out using DFT and TD-DFT methods to evaluate the ground state geometry and vertical

exciation energies.

Scheme 1. Synthesis of curcumin analogues: (a) 2 equiv. aromatic aldehyde, acetylacetone, B₂O₃, i-PrNH₂, B(Oi-Pr)₃, EtOAc, (C1–C7) (b) BF₃·Et₂O, CH₃COOH, Et₂O, −5 °C, 24h (**B1–B7**).

Table 2. Maximum absorption wavelengths (λ abs), molar absorption coefficients (ϵ), emission wavelengths (λ em) and Stokes-shifts of compounds C7, B1–B7 in acetone.

Comp.	λ _{abs} (nm)	۶ (l·mol ^{−1} ·cm ^{−1})	λ _{em} (nm)	Stokes-shift (cm ⁻¹)
C7	350, 468	89712	522	2210
B1	418, 502	69500	524	4312
B2	405, 462, 482	68620	532	5593
B3	500	45324	534	1447
B4	343, 490	47790	575	3017
B5	465, 486	32081	538	2918
B6	474, 498	54810	570	3553
B7	399, 565	123700	528, 634	9289

Table 1. NMR data for compund C7, B1–B7.

Comp.	δ (ppm) ¹ H NMR for CH	δ (ppm) ¹⁹ F NMR	δ (ppm) ¹¹ B NMR
B1	6.36 ^a	-141.09	-1.02
B2	6.34 ^a	-139.6	-0.83
B3	6.59 ^b	-139.2	-0.93
B4	6.21 ^a	-140.6	-0.9
B5	6.40 ^a	-141.2	-1.05
B6	6.36 ^a	-140.9	-1.1
B7	6.47 ^c	-150.8	-0.96
a.	d6-acetone, 600 MHz		

b. CDCl₃, 400 MHz

c. d6-acetone, 400 MHz

Fig.1. Normalized absorption (at $\sim 10^{-5}$ M) (a) and emission (b) spectra for compounds **B1–B7** in acetone.

Equipments and program

◆Bruker Avance 400 and 600 MHz NMR, Thermo LTQ Orbitrap- HRMS ♦ Shimadzu GC-MS QP-2010 PLUS Perkin Elmer Lambda 35 UV-Vis Perkin Elmer FL-55 fluorescence ✤Gaussian 09

Conclusions

Symmetrical curcumin-analogues borondifluoride complexes **B1–B7** were synthesized, and their structures were fully characterized. Two novel compounds (C7 and B7) with enhanced photophysical properties are presented. The ground state geometry of the structures, and the vertical excitation were investigated using the B3LYP functional with 6-311+G(d, p) basis set. The results from the theoretical calculation support the results from the measurements, the compound with phenothiazine unit has the most bathochromic shift in UV and fluorescence spectra.

Fig.2. DFT optimized ground state conformations (top and side view) in gas phase of the phenothiazine derivative borondifluoride complex B7 calculated at the B3LYP/6-31G(d,p) level of theory. Values presented are calculated relative energies (E_{rel}) in kcal/mol.

Acknowledgment: This work was possible with the financial support of UBB-GTC 35278/18.11.2020.

References

- 1. Pabon, H.J.J. A synthesis of curcumin and related compounds. Recl. des Trav. Chim. des Pays-Bas 1964, 83, 379–386
- 2. Bai, G.; Yu, C.; Cheng, C.; Hao, E.; Wei, Y.; Mu, X.; Jiao, L. Syntheses and photophysical properties of BF2 complexes of curcumin analogues. Org. Biomol. Chem. 2014, 12, 1618–1626. 3. Margar, S.N.; Rhyman, L.; Ramasami, P.; Sekar, N. Fluorescent difluoroboron-curcumin analogs: An investigation of the electronic structures and photophysical properties. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2016, 152, 241–251