

# **Development of extraction and analytical method** for determination of fungicide residues in cardboard samples



# Emese GÁL<sup>1</sup>, Łukasz DABROWSKI<sup>2</sup>

<sup>1</sup>Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Hungarian Line of study, Arany János str, Kolozsvár, 400028, Romania.

<sup>2</sup>UTP University of Science and Technology, Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, Seminaryjna Street, 85-326 Bydgoszcz, Poland

emese.gal@ubbcluj.ro

Paper and cardboard is the most common packaging material being utilized as primary and secondary packaging materials, often in forms adapted to direct contact with foodstuffs. Pyrimethanil (Pyr), imazalil (Ima), thiabendazole (Tbz) and orto-phenyl phenol (OPP) are commonly applied in citrus packhouses for the control of green mould, caused by *Penicillium digitatum*. The chosen compounds are commonly detected in fruit, vegetable and their packaging. The present study presents a method for the non-thermal Focused UltraSound Extraction (FUSE) technique and a GC/MS detection method for the fungicides listed above. The developed method showed a good linearity ( $R^2 > 0.99$ ) and precision, yielding relative standard deviations (RSD) of less than 15% for reproducibility and 18% for repeatability.

### Table 1. GC/MS method validation parameters (calibration in 5 point, three replicate injection)

| Std.<br>name | IS conc.<br>µg/ml | LOD<br>(µg/ml,<br>S/N 3) | LOQ (µg/ml,<br>S/N 10) | RT (min) | R <sup>2</sup> | Accuracy<br>(%) | Quantitation ions<br>m/z |
|--------------|-------------------|--------------------------|------------------------|----------|----------------|-----------------|--------------------------|
| OPP          | -                 | 0.05                     | 2                      | 7.014    | 0.9965         | 90-102          | 170, 169, 141            |
| Pyr          | -                 | 0.05                     | 2                      | 8.043    | 0.9933         | 84-107          | 198, 199, 200            |
| TBZ          | -                 | 1.25                     | 2                      | 9.363    | 0.9982         | 92-104          | 174, 175, 201            |
| Ima          | -                 | 0.1                      | 2                      | 9.689    | 0.9976         | 95-107          | 173, 215, 217            |
| HCB-IS       | 4                 | -                        | -                      | 7.792    | -              | -               | 282, 284, 286            |
| Lin-IS       | 2                 | -                        | -                      | 7.995    | -              | _               | 218, 219, 221            |
| Tpp-IS       | 2                 | -                        | -                      | 10.709   | -              | _               | 201, 215, 325, 326       |

HCB-nexachlorbenzene, Lin-lindane, Ipp-tripnenylphosphine

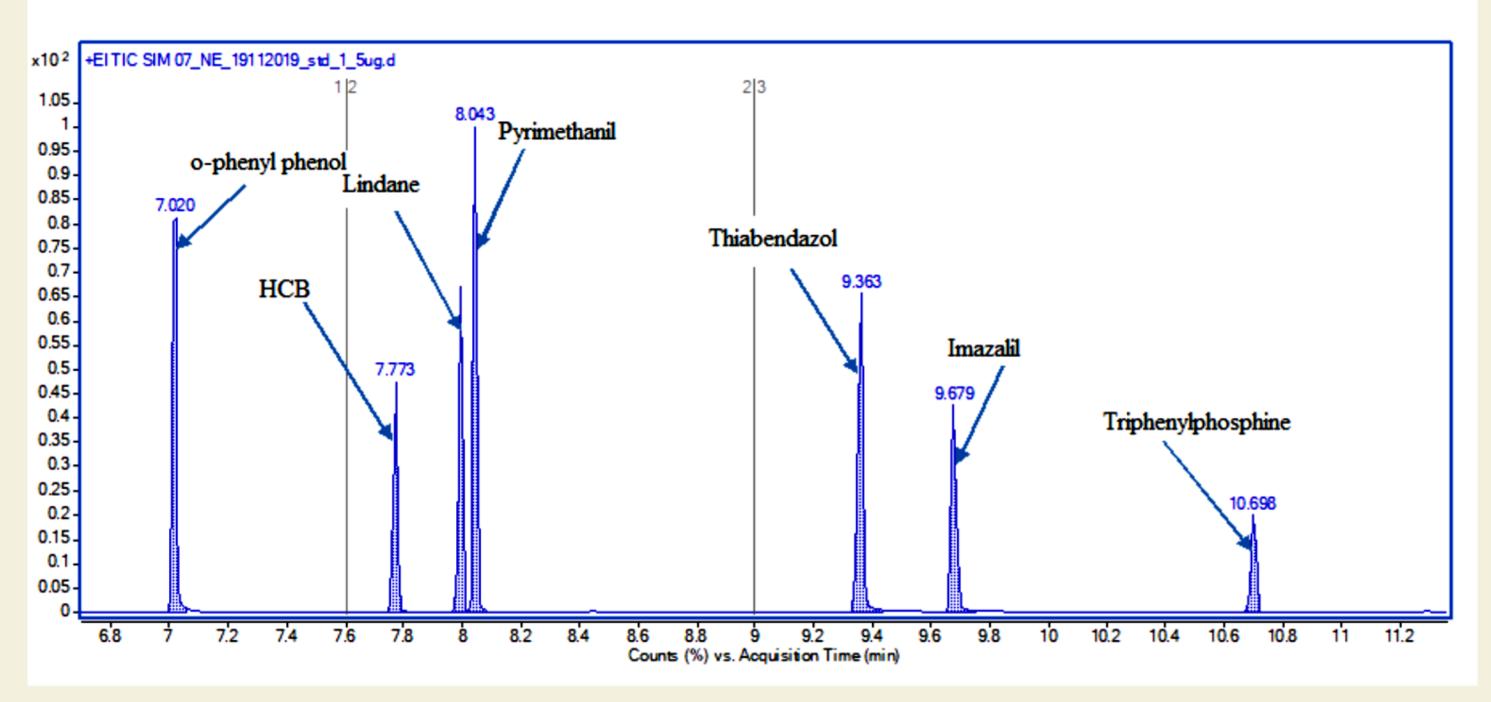
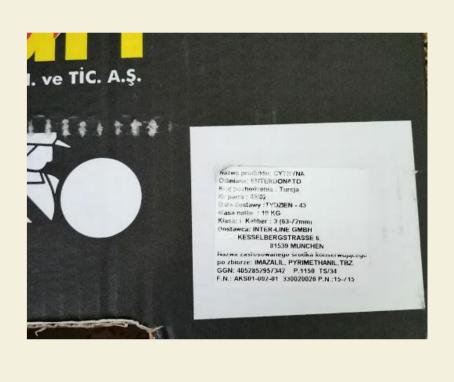




Table 2. Characteristics of the selected cardboard boxes.

| Cardboard box<br>(cardboard number/ used pesticides) | Utilization<br>(fruit) | Originate    |
|------------------------------------------------------|------------------------|--------------|
| Cb002-Ima, Tbz, Pyr                                  | oranges                | South Africa |
| Cb005-Ima Tbz, Pyr                                   | oranges                | Spain        |
| Cb006-Ima, Pyr                                       | lemon                  | Turkey       |
| Cb009-Ima                                            | mandarin               | Chile        |
| Cb010-Ima, Tbz, Pyr                                  | oranges                | South Africa |
| Cb015-Ima                                            | mandarin               | Spain        |
| Cb016-Ima, Tbz, Pyr                                  | lemon                  | Turkey       |
| Cb017-paper from lemon packages Ima, Tbz,<br>Pyr     | lemon                  | Turkey       |
| Cb019-bio cardboard no preservatives                 | lemon                  | Spain        |
| Cb020-bio cardboard no preservatives                 | Lemon and leaf         | Spain        |







Cb016

Fig.2. Cardboard boxes inscriptions with used fungicide.

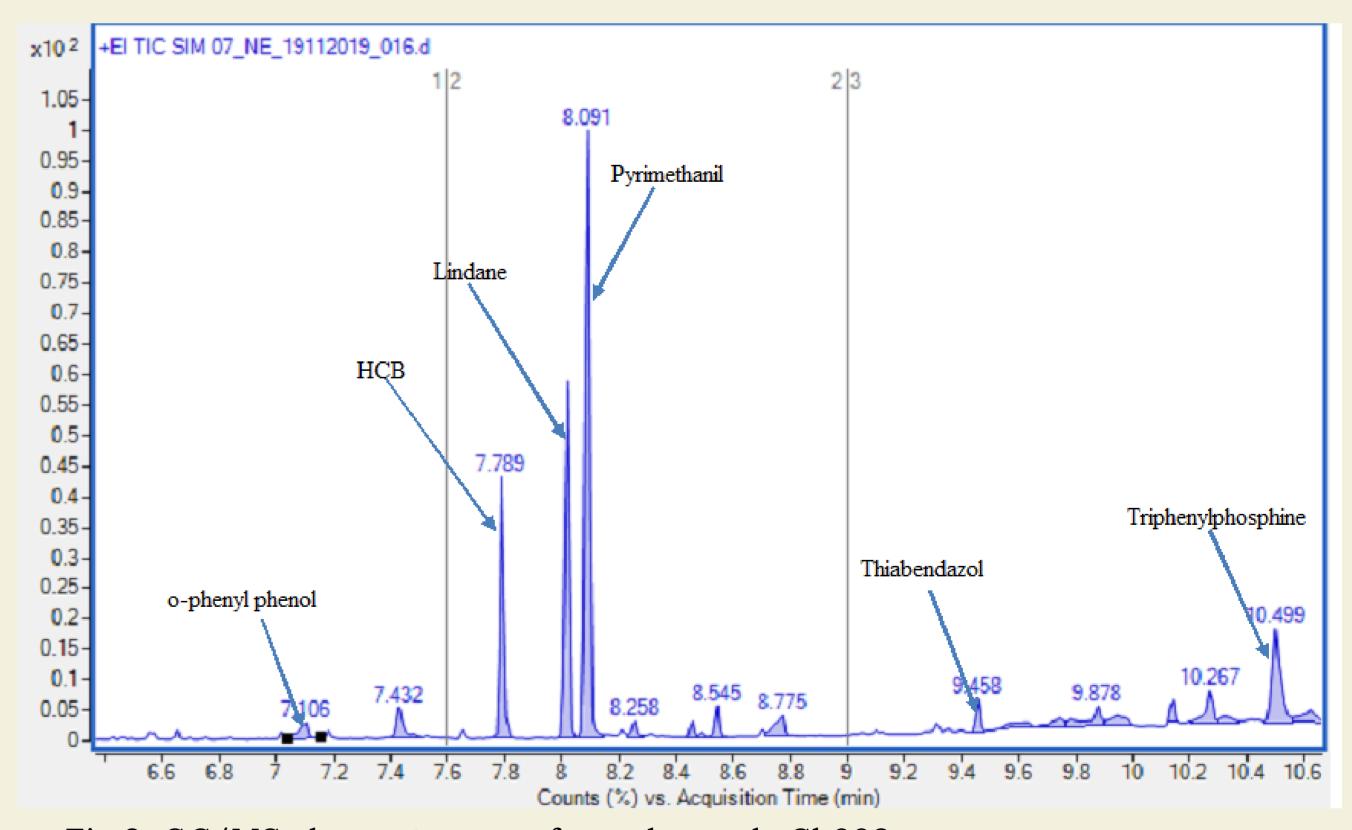

Fig.1. GC/MS chromatogram of IS and STD used.

Table 3. FUSE method development parameters.

| FUSE               | Sample     | Solvent               | Time/ quantity of  | Calculated recovery (%) |       |       |       |
|--------------------|------------|-----------------------|--------------------|-------------------------|-------|-------|-------|
| method             |            |                       | solvent            | OPP                     | PYR   | TBZ   | IMA   |
|                    |            | ACN                   | 1,5 min, 8ml       | 47                      | 63    | 8.34  | 67.9  |
|                    |            | MeOH                  | 1,5 min, 8ml       | 83                      | 83    | 28.7  | 103.6 |
|                    |            | Acetone               | 1,5 min, 8ml       | 4.62                    | 16    | 20.3  | 19.3  |
|                    |            | DCM: MeOH/ 92:8 (v/v) | 1,5 min, 8ml       | 59.4                    | 74    | 62.9  | 80.1  |
|                    |            | DCM: MeOH/ 92:8 (v/v) | 1,5 min x 2, 16 ml | 23.3                    | 34.4  | 16.9  | 34.7  |
|                    |            | DCM: MeOH/ 92:8 (v/v) | 3 min, 8 ml        | 29                      | 36    | 21    | 34.4  |
|                    |            | DCM: MeOH/ 92:8 (v/v) | 3 min x 2, 16 ml   | 30                      | 35    | 23.6  | 29.3  |
|                    |            | DCM: MeOH/ 92:8 (v/v) | 4,5 min, 8 ml      | 28                      | 34.5  | 19.3  | 44.4  |
|                    |            | DCM: MeOH/ 92:8 (v/v) | 1,5 min x 3, 24 ml | 22                      | 33.5  | 22.8  | 36.1  |
| <b>100</b> %       | 5 x 5 cm   | DCM: MeOH/ 92:8 (v/v) | 5 min, 8 ml        | 22                      | 33.4  | 16.8  | 37.9  |
| <b>power</b> , 0,5 | (~0,6 g),  | DCM: MeOH:ACN/        | 3 min, 8 ml        | 50                      | 70    | 57.5  | 71.4  |
| cycle              | one piece  | 87:6.6:6.6 (v/v)      |                    |                         |       |       |       |
| -                  |            | DCM: MeOH:ACN/        | 1,5 min x 2, 16 ml | 33                      | 45    | 22.1  | 58.3  |
|                    |            | 87:6.6:6.6 (v/v)      |                    |                         |       |       |       |
|                    |            | DCM: MeOH:ACN/        | 3 min, 8 ml        | 92                      | 89.3  | 92    | 89.9  |
|                    |            | 76:12:12 (v/v)        |                    |                         |       |       |       |
|                    |            | DCM: MeOH:ACN/        | 1.5 min x 2, 16 ml | 61                      | 81.4  | 84.9  | 89.4  |
|                    |            | 76:12:12 (v/v)        |                    |                         |       |       |       |
|                    | 5 x 5 cm   | DCM: MeOH/ 92:8 (v/v) | 1,5 min x 2, 16 ml | 72.1                    | 83.5  | 19.9  | 91.3  |
|                    | (~0,6 g),  | DCM: MeOH/ 92:8 (v/v) | 3 min, 8 ml        | 11                      | 18.12 | > LOQ | 17.1  |
|                    | chopped in |                       |                    |                         |       |       |       |
|                    | small      |                       |                    |                         |       |       |       |
|                    | pieces     |                       |                    |                         |       |       |       |
| 100 %              | 5 x 5 cm   | DCM: MeOH/ 92:8 (v/v) | 3 min, 8 ml        | 24                      | 35.3  | 15    | 37.6  |
| power, 0,8         | (~0,6 g),  |                       |                    |                         |       |       |       |
| cycle              | one piece  |                       |                    |                         |       |       |       |

Table 4. Fungicide quantities found in cardboards.

**Extraction procedure:** 5 x 5 cm cardboard sample was weighed (aprox. 0.6 g) in a 9 mL vial. 8 ml solvent mixture (DCM: ACN: MeOH/ 76: 12: 12) were added and the sample were ultrasonicated 3 min. at 100% power 0.5 s cycle using micro-tip. After extraction the solvent were poured off from the cardboard. To the obtained extract solution was added 100 µl 1-octanol as solvent keeper. The extracts were evaporated under nitrogen stream at 40 °C. After evaporation the obtained mixture were transferred to a micro vial and internal standards were added.



# Cb. sample Pyr ( $\mu$ g/ml) Tbz ( $\mu$ g/ml) Ima ( $\mu$ g/ml)

| Cb00215.63662.76675.5843Cb0052.51311.14333.7215Cb0062.7032-0.3307Cb0093.6507-0.6855Cb010-4.72042.7992Cb012-12.58285.7469Cb0166.1443-0.3577Cb0170.3479 |       |         |         |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|---------|--------|
| Cb0062.7032-0.3307Cb0093.6507-0.6855Cb010-4.72042.7992Cb012-12.58285.7469Cb0166.1443-0.3577                                                           | Cb002 | 15.6366 | 2.7667  | 5.5843 |
| Cb0093.6507-0.6855Cb010-4.72042.7992Cb012-12.58285.7469Cb0166.1443-0.3577                                                                             | Cb005 | 2.5131  | 1.1433  | 3.7215 |
| Cb010-4.72042.7992Cb012-12.58285.7469Cb0166.1443-0.3577                                                                                               | Cb006 | 2.7032  | -       | 0.3307 |
| Cb012-12.58285.7469Cb0166.1443-0.3577                                                                                                                 | Cb009 | 3.6507  | -       | 0.6855 |
| Cb016 6.1443 - 0.3577                                                                                                                                 | Cb010 | _       | 4.7204  | 2.7992 |
|                                                                                                                                                       | Cb012 | _       | 12.5828 | 5.7469 |
| Cb017 - 0.3479                                                                                                                                        | Cb016 | 6.1443  | -       | 0.3577 |
|                                                                                                                                                       | Cb017 | _       | -       | 0.3479 |

## Fig.3. GC/MS chromatogram of a real sample Cb002.

Conclusion: A procedure for analyzing five chemical contaminants in cardboard, used in citrus fruits packaging, was developed. For extraction a new FUSE method was developed and optimized using a solvent mixture to obtain a high recovery for fungicide. GC/MS analysis was developed using SIM method. Applicability of the method was illustrated using commercial cardboard boxes. The results suggest that the presence of used fungicides can be detected even after a long period after the treatment.

#### Equipments

> Agilent 7890B GC system and a 5977B MSD (Agilent Technologies) > Hielscher UP 100H sonicator/homogenizer provided with a 3-mm cylindrical titanium alloy probe

Acknowledgment: This work was possible with the financial support of UTP University of Science and Technology, Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, Bydgoszcz, Poland.