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Abstract 

The aim of this paper is to quantitatively analyze the cohesion of political and military texts from the Central 

Intelligence Agency (CIA) digital library using Markov chains. The texts were characterized by 17-

dimensional feature vectors (FVs), which describe the ratio of parts of speech. The texts were divided into 80 

text entities, the similarity between each entity and the entire text was calculated using cosine distance, and 

from these we generated time series describing the dynamics of the text. The cohesion of the texts is represented 

by the overall thematic cohesion (OTC) measure. According to our results, the 30 CIA texts examined show 

high cohesion, which increases with the length of the text, and the application of a second-order Markov model 

is more sensitive to the temporal structure of the text dynamics.  

Keywords: text cohesion metrics, 1st and 2nd order Markov chains, DBSCAN algorithm, Linkage algorithm, 

k-means algorithm. 

Kivonat 

A dolgozat célja a Central Intelligence Agency (CIA) digitális könyvtárából származó, politikai és katonai 

témájú szövegek kohéziójának kvantitatív elemzése Markov-láncok alkalmazásával. A szövegeket 17 dimenziós 

tulajdonság vektorokkal (FV) jellemeztük, amelyek a szófajok arányát írják le. A szövegeket 80 szövegentitásra 

bontva, az egyes entitások és a teljes szöveg közötti hasonlóságot koszinusz-távolság segítségével számítottuk 

ki, és ezekből állítottuk elő a szöveg dinamikáját leíró idősorokat. A szövegek kohézióját az átfogó tematikus 

kohézió (OTC) mérőszám reprezentálja. Eredményeink szerint a vizsgált 30 CIA-szöveg magas kohéziót mutat, 

amely a szöveghosszal növekszik, és másodrendű Markov-modell alkalmazása érzékenyebben ismeri fel a 

szövegdinamika időbeli szerkezetét.  

Kulcsszavak: a szövegkohézió metrikái, első és másodrendű Markov láncok, DBSCAN algoritmus, Linkage 

algoritmus, k-Means algoritmus. 

 

1.  BEVEZETÉS 

A kvantitatív nyelvészet területe számos törvényt és mérőszámot foglal magába a szöveges tartalmakban 

előforduló különböző mintázatok elemzésére. Dolgozatunkban a szövegek kohéziójának és azok 

dinamikájának leírására releváns statisztikai metrikákat és matematikai modelleket alkalmazunk. 

Szövegkohézió fogalma alatt a szöveg különböző részeit összetartó erőt értjük, amely biztosítja, hogy a 

mondatok és a gondolatok logikusan kapcsolódjanak egymáshoz, jól érthető egészet alkotva. Ezt nyelvtani 

(lineáris) és tartalmi (globális) eszközökkel érik el, mint például kötőszavak, ismétlés, névmások, ill. a téma-

réma szerkezet vagy a logikus gondolatmenet. Korábbi kutatásainkban [1] megállapítottuk, hogy egy adott 

szövegen belül a különböző entitások (azaz szövegrészletek) és a szülő szöveg között magas szintű korreláció 

figyelhető meg, ami az adott szöveg kohéziójával magyarázható. Ugyanez a magas szintű korreláció nem áll 

fenn a különböző szövegek eltérő entitásai között. A narratív folyamat az a fontos fogalom, amin keresztül a 

szerző megvalósítja céljait, ezt tanulmányozva írhatjuk le, hogy hogyan működik a narratíva. A 

szövegdinamika a narratíva belső folyamata, ami által eléri céljait, az olvasói dinamika az olvasó ezzel 
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megegyező kognitív, etikai, affektív és esztétikai válasza a szövegdinamikára [6]. Vizsgálatunkban 

szövegdinamika fogalma alatt az adott szövegben található események, történések sorát értjük, amit a szerző 

elmond a hallgatóságának. A szövegek láncszerű szerkezetűek, folyamatosan előrehaladva bontakozik ki 

bennük a cselekmény. A cselekmény közlése történhet különböző idősíkok között váltva, valamint az 

események, a dolgok közepébe vágva, azaz „in medias res”.  

Kapcsolódó kutatásnak tekinthetjük az ókori görög irodalmi szövegek osztályokba történő sorolását, 

amit Visszacsatolásos Neurális Hálózat (RNN) alkalmazásával hajtottunk végre az ókori Alexandriai Könyvtár 

osztályozási rendszerére támaszkodva [2, 3]. Egy másik irányban is kutatást végeztünk, ahol a MARCELL 

projekt során összegyűjtött Európai Uniós horvát és angol nyelvű jogszabályokat elemeztük. Elvégeztük a jogi 

korpuszban lévő címkézetlen jogi szövegek téma besorolásának becslését a Latent Dirichlet Allocation (LDA) 

algoritmus alapján több címkés osztályozást használva. Kidolgoztuk az LDA módszer flexibilis változatát, 

hogy azzal támogassuk a jogi szövegek minél kifinomultabb téma besorolását, ahol adott küszöbérték 

definiálásával több dobogós téma besorolását valósítottuk meg a jogszabályok számára [4, 5]. 

A dolgozat további részének felépítése a következő: az elsőrendű és másodrendű Markov láncok 

modellezési tulajdonságainak bemutatása a második részben található. Utána a CIA (Central Intelligence 

Agency) könyvtárából letöltött szövegek elemzése kerül sorra Markov módszerrel. Az összefoglalás és jelen 

kutatási tevékenység folytatásának lehetséges lépései a dolgozat végére került.  

2.  ALKALMAZOTT MÓDSZER 

Az elemzett szövegek szerzői események, történések sorát írják le adott időrendi sorrendben. A szöveg 

szerzői saját egyéni stílusukat megvalósítva mondják el a történetet olvasóiknak. A szerzők által megtervezett 

és felépített szöveg annak kohézióját eredményezi, ami kiaknázható minden egyes szöveghez tartozó 

szövegrészlet automatikus leírására. A dolgozatban szövegentitásnak tekintjük adott szöveg egymás után 

következő mondataiból álló szövegrészletet. Ebből a szempontból nézve tehát a szöveg szövegentitások 

sorozatának fogható fel. A szövegek kohéziójának és dinamikájának leírására első- és másodrendű Markov 

láncokat alkalmaztunk matematikai modellként. 

A diszkrét idejű Markov lánc az {𝑋𝑡}, 𝑡 ≥ 0, sztochasztikus idősorok modellezéséhez használt módszer, 

amelyeknél a következő megfigyelés csak korlátozott számú előző megfigyeléstől függ:  

𝑃(𝑋𝑡+1 = 𝑥𝑡+1|𝑋𝑡 = 𝑥𝑡 , … , 𝑋0 = 𝑥0) = 𝑃(𝑋𝑡+1 = 𝑥𝑡+1|𝑋𝑡 = 𝑥𝑡 , … , 𝑋𝑡−𝑘 = 𝑥𝑡−𝑘)         (1) 

ahol 𝑃(𝐴|𝐵) az A esemény B eseménytől függő feltételes valószínűségét jelenti. A következő esemény 𝑘 darab 

előző eseménytől függ, ahol 𝑘-t a Markov folyamat rendjének nevezzük. Ha 𝑘 = 1, akkor a folyamatot 

egyszerűen (elsőrendű) Markov folyamatnak, ha 𝑘 = 2, akkor másodrendű Markov folyamatnak nevezzük. 

Megfigyelhető, hogy 𝑘 = 1 esetén a jövő csak a jelentől függ, míg 𝑘 = 2 esetén a jövő a múlttól és a jelentől 

is függ. Ezeknél a folyamatoknál az állapotok közötti váltások valószínűségét 𝑃 tranzíciós mátrixba rendezzük. 

Adott sor-oszlop által jelölt elem a sor azonosítójú állapotból az oszlop azonosítójú állapotba való váltáshoz 

tartozik: 

𝑃𝑖𝑗 = 𝑃(𝑋𝑡+1 = 𝑠𝑗|𝑋𝑡 = 𝑠𝑖 , … , 𝑋𝑡−𝑘 = 𝑠𝑘), ahol          (2) 

∑ 𝑃𝑖𝑗
𝑛
𝑗=1 = 1                 (3) 

vagyis a tranzíciós mátrix minden sora mentén teljes eseményhalmazunk van, azaz a valószínűség értékek 

összege 1).  Az elsőrendű Markov folyamatot emlékezet nélkülinek nevezzük és jól alkalmazható a rövid távú 

idősoros függések modellezésére. A másodrendű Markov folyamat három dimenziós tranzíciós tenzorját is 

lehetséges kibővített mátrixra konvertálni:  

𝑃𝑖𝑗𝑘 = 𝑃(𝑋𝑡+1 = 𝑠𝑘|𝑋𝑡 = 𝑠𝑗 , 𝑋𝑡−1 = 𝑠𝑖)         (4) 

𝑃(𝑖𝑗)→(𝑗𝑘) = 𝑃(𝑋𝑡+1 = 𝑠𝑘|𝑋𝑡 = 𝑠𝑗 , 𝑋𝑡−1 = 𝑠𝑖)          (5) 

Itt a következő állapot az előző kettőtől függ, így erősebb időbeli szerkezetet képes megragadni. Az 

állapotpárok egyetlen kibővített állapotként való kezelése elsőrendű lánccá alakítja a folyamatot az 𝕊2 

halmazon. Ez akkor hasznos, ha az egylépéses memória nem elegendő az idősor dinamikájának modellezésére. 

Egy diszkrét idejű Markov-lánc {𝑋𝑡}, 𝑡 ≥ 0, stacionárius eloszlása 𝝅 = (𝝅𝟏, … , 𝝅𝒏) egy olyan valószínűség-

eloszlás, amely kielégíti az alábbi feltételeket: 

𝜋𝑃 = 𝜋          (6) 
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∑ 𝜋𝑖
𝑛
𝑖=1 = 1            (7) 

ahol 𝑃 az 𝑛 × 𝑛-es tranzíciós mátrix, és 𝜋𝑖 = 𝑃(𝑋𝑡 = 𝑠𝑖) az i-edik állapot stacionárius valószínűsége. 

Ha a lánc eléri a stacionárius eloszlást, akkor minden későbbi lépésben az eloszlás változatlan marad: 

lim
𝑡→∞

𝜇0𝑃𝑡 = 𝜋               (8) 

A (6) összefüggés alapján látható, hogy a 𝜋 stacionárius eloszlás a tranzíciós mátrix saját vektora. A (7) 

tulajdonság alapján a 𝑃 mátrix legnagyobb abszolútértékű sajátértéke |𝜆1| = 1. A stacionárius eloszlás 

elérésének sebességét a 𝑃 második legnagyobb sajátértékkel lehet mérni az alábbi módon: 

𝜏𝑚𝑖𝑥 =
1

1−|𝜆2|
                  (9) 

ahol a nevezőben lévő 1 − |𝜆2| tag a spektrális rés nevet viseli. Ez minél nagyobb, annál gyorsabban keveredik 

a lánc, azaz annál hamarabb közelít a stacionárius eloszláshoz. Ezt a metrikát használjuk a szövegek 

alszövegeinek elemzéséhez [7, 8, 9, 10].  

3.  ESETTANULMÁNY 

Korábbi vizsgálatunkhoz képest további 10 darab új szöveget töltöttünk le a Central Intelligence Agency 

(CIA) szervezet Digitális Könyvtárából, ami összesen 30 darab szövegből álló adathalmazt eredményezett. A 

szövegekről elmondható, hogy különféle politikai és katonai eseményeket írnak le, amelyek a világban 

történtek 50 évvel ezelőtt. Ezért ezek a szövegek homogénnek tekinthetők, mert a fent említett témákról 

szólnak. Ezen vizsgált szövegek felsorolását lásd az 1. táblázatban, ahol a szövegek a szavak számának 

növekvő sorrendjében szerepelnek. 

           Az elemzett CIA szövegek                                                                                            1. táblázat 

 Szerző(k) Cím 

1. Central Intelligence Agency Memorial Wall Publication 

2. Richard Mobley, James 

Marchio, Gary B. Keeley 

The Thrill of the Hunt: Lessons from Archival Research into Cold-War Era 

Intelligence Decisionmaking 

3. Central Intelligence Agency Notes from Our Attic: A Curator’s Pocket History of the CIA 

4. Central Intelligence Agency The Work of a Nation: The Center of Intelligence 

5. Central Intelligence Agency Our First Line of Defense: Presidential Reflections on US Intelligence 

6. Gregory F. Treverton, 

Renanah Miles  

Unheeded Warning of War: Why Policymakers Ignored the 1990 Yugoslavia Estimate 

7. US Government A Tradecraft Primer: Structured Analytic Techniques for Improving Intelligence 

Analysis 

8. David W. Waltrop An Underwater Ice Station Zebra 

9. Central Intelligence Agency The Caesar, Polo and Esau Paper: Cold War Era Hard Target Analysis of Soviet and 

Chinese Policy and Decision Making 1953-1973 

10. Central Intelligence Agency A Life in Intelligence – The Richard Helms Collection 

11. Central Intelligence Agency At Cold War’s End 

12. Clayton D. Laurie, Andres 

Vaart 

CIA and the Wars in Southeast-Asia 1947-75 

13. Central Intelligence Agency Bosnia, Intelligence, and the Clinton Presidency: The Role of Intelligence and Political 

Leadership in Ending the Bosnian War 

14. Central Intelligence Agency Penetrating the Iron Curtain: Resolving the Missile Gap with Technology 

15. Michael Warner, J. Kenneth 

McDonald 

US Intelligence Community Reform Studies since 1947 

16. Central Intelligence Agency President Nixon and the Role of Intelligence in the 1973 Arab-Israeli-War 

17. Central Intelligence Agency The Warsaw Pact: Treaty Friendship, Cooperation and Mutual Assistance 

18. Central Intelligence Agency Profiles in Leadership: Directors of the Central Intelligence Agency and Its 

Predecessors 1941-2023 

19. Central Intelligence Agency Ronald Reagan: Intelligence and the End of the Cold-War 

20. Central Intelligence Agency President Carter and the Role of Intelligence in the Camp David Accords 
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21. Central Intelligence Agency Predicting the Soviet Invasion of Afghanistan: The Intelligence Community’s Record 

22. Andrew Skitt Gilmour A Middle-East Primed for New Thinking: Insights and Policy Options From the 

Ancient World 

23. Robert Vickers The History of CIA’s Office of Strategic-Research, 1967-81 

24. Thomas L. Ahern, Jr. „Nothing if Not Eventful”: Recollections of a Life’s Journey in CIA 

25. James W. „Bill” Lair as told 

to Thomas L. Ahern, Jr.  

„An Excellent Idea: Leading CIA Surrogate Warfare in Southeast Asia, 1951-1970, a 

Personal Account 

26. Central Intelligence Agency CIA’s Analysis of the Soviet Union 1947-1991: A Documentary Collection 

27. John L. Helgerson Getting to Know the President: Fourth Edition: Intelligence Briefings of Presidential 

Candidates and Presidents-elect, 1952-2016 

28. Central Intelligence Agency Watching the Bear: Essays on CIA’s Analysis of the Soviet Union 

29. Douglas F. Garthoff Directors of Central Intelligence as Leaders of the U.S. Intelligence Community, 1946-

2005 

30. L. Britt Snider The Agency and the Hill: CIA’s Relationship with Congress, 1946-2004 

 

 

A szövegek hossza 3,6 és 167 ezer szó között található. A vizsgált szövegek 70%-a kevesebb, mint 

35000 szót foglal magába, ezáltal lehetővé válik számunkra a szövegméretek megközelítőlegesen három 

lineáris értéktartományát vizsgálnunk (lásd az 1. ábrát). 

 

 
1. ábra. A 30 darab CIA szöveg hossza 

 

Mindegyik CIA szöveget tokenekre (szózsetonokra) alakítottuk át. Ezután a szövegek tokenjeit 

megfelelő szófaj kategóriába beazonosítottuk, különös tekintettel az adott szöveg kontextusára. Matlab 

programozási eszköz beépített függvényei segítségével megkaptuk az egyes tokenek megfelelő szófaj 

kategóriába történő besorolását. 

   A feature vektor token kategóriái                                                                                                  2. táblázat 

ID Token kategória  ID Token kategória  ID Token kategória  ID Token kategória 

1 melléknév  6 elválasztószó  11 viszonyszó  16 szimbólum 

2 értelmező  7 indulatszó  12. névmás  17 ige 

3 határozószó  8 főnév  13 tulajdonnév    

4 segédige  9 számnév  14 írásjel    

5. kötőszó  10 egyéb  15 alárendelőszó    

 

Összesen 17 token kategóriát használtunk (lásd a 2. táblázatot). Az „egyéb” token kategóriára azért volt 

szükség, mert a nemzeti nyelvek lehetséges speciális tulajdonságai ebbe helyezhetők el. Az egyes 

dimenziókban az adott szófajok százalékos előfordulási gyakorisága jelenik meg. Ez a 17 dimenziós 

jellemzővektor minden szövegegységben számszerűsíti az egyes szófajok arányát, gyakoriságát és eloszlását. 



XXIII. Enelko – XXXII. SzámOkt 

168 EMT 

Lehetővé teszi a szövegek nyelvtani szerkezetének, stílusának és komplexitásának objektív összehasonlítását, 

valamint rejtett mintázatok és szerzői sajátosságok feltárását. 

3.1. Szövegek tulajdonság vektorainak egyedi mintázatai 

 

A vizsgált szövegeket egy 17 dimenziós FV (Feature Vector) tulajdonság vektor jellemzi a tokenek 

relatív száma alapján. Ezek a vektorok speciális mintázatukból adódóan tulajdonképpen leírják az adott szöveg 

jellegét a szövegek méretétől függetlenül (lásd a 2. ábrát). 

 

   
2. ábra. Szövegek globális tulajdonság vektora három különböző méretű szövegnél: T6, T15, T30. 

 

Megfigyelhető, hogy az azonos témákba tartozó szövegek is eltérő tulajdonság vektor mintázattal 

rendelkeznek a nyelv specifikussága, a szöveg stílusa, illetve másik szerzője miatt. Három kiválasztott szöveg 

eltérő tulajdonság vektor mintázata kerül bemutatásra a 2. ábrán. Az intenzitás százalékértékeket lefelé 

kerekítettük a [0, 100] intervallumban. Szembetűnő a diagramokon, hogy a legnagyobb intenzitás értékkel a 

főnév token kategória rendelkezik mindhárom esetben. A legritkább token kategóriák pedig a számnév, 

viszonyszó, az alárendelőszó és a szimbólum. 

A 𝑁 = 30 darab szöveg mindegyik 𝑆𝑇𝑖
𝑗
 szövegentitására (alszöveg, „SubText”) vonatkozóan 

előállítottuk a 𝐹𝑉𝑖
𝑗

∈ 𝑀1𝑥17 tulajdonság vektorokat, ahol 𝑖 = 1, … , 𝑁 és 𝑗 = 1, … , 𝑚. A szövegentitások száma 

𝑚 ∈ ℕ, jelen esetben 𝑚 = 80 darabra osztottuk fel mindegyik szöveget. Mivel a szövegek különböző 

hosszúságúak, ebből adódóan a különböző szövegekből származó szövegentitások is változó hosszúságúak 

(lásd az 1. ábrát).  

3.2. Szövegentitások hasonlóságának elemzése 

Minden egyes 𝑇𝑖, 𝑖 = 1, … , 𝑁 szöveg esetén az 𝑗 = 1, … , 𝑚 darab 𝑆𝑇𝑖
𝑗
 szövegentitására meghatároztuk 

az 𝑚 darab 𝐹𝑉𝑖
𝑗
 tulajdonságvektort, illetve a szöveg egészére vonatkozó 𝐹𝑉𝑖, globális tulajdonságvektort is. 

Ezáltal 𝑇𝑖 esetén kiszámolható az m darab saját szövegentitás, illetve a globális tulajdonságvektor közötti 

hasonlóság. Ehhez a Koszinusz távolság metrikát használtuk, mivel az egyes 𝐹𝑉𝑖
𝑗
 vektorok egyes 

dimenziókban nagyon eltérő értékeket mutattak. A Koszinusz távolság kiszámolása két 𝑢, 𝑣 ∈  𝑀1𝑥17 vektor 

esetén az alábbi összefüggéssel történik:  

 d(𝑢, 𝑣) = 1 −
𝑢∙𝑣

‖𝑢‖‖𝑣‖
        (10) 

ahol 𝑢 ∙ 𝑣 az két vektor belső szorzatát jelenti. Fontos megjegyezni, hogy a vektorok hosszától független ez a 

távolság, csupán a köztük lévő szöget érzékeli. Így párhuzamos vektoroknál a metrika nulla értéket ad, míg 

merőlegesség esetén az érték 1. Ennek segítségével az adott 𝑇𝑖 szöveget egy 𝐷𝑖 = (𝑑𝑖
1, … , 𝑑𝑖

𝑚) idősorral 

jellemezzük, amit szöveg dinamikájának nevezünk. A 𝐷𝑖 idősor átlaga az adott 𝑇𝑖 szöveg egydimenziós értékét 

jelenti, vagyis a szöveg egy globális metrikája. Rögzített 𝑖 esetén a 𝑑𝑖
𝑗
, j = 1,…,m hasonlóságok mindegyike 

az adott szöveg tartalmára jellemző. 

Mivel az egymás után következő szövegentitások mondanivaló szempontjából összefüggők, ezért 

mindegyikük hozzájárul a teljes szöveg tartalmi integritásához, amit kohéziójának nevezünk. Ez alapján adott 

𝑇𝑖 szöveg esetén (𝑖 rögzített) a fentebb számolt 𝐷𝑖 vektor átlaga a teljes szöveg tartalmára vonatkozó mérőszám, 

amit a szöveg OTC (Overall Thematic Cohesion), átfogó tematikus kohéziójának nevezünk:  

𝑂𝑇𝐶𝑖  =
1

𝑚
∑ 𝑑𝑖

𝑗
,𝑚

𝑗=1    𝑖 = 1, … , 𝑚       (11) 
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Könnyen belátható, az OTC metrika a (0, 1) intervallumban adja értékeit. Az 𝑁 =  30 szöveg esetén 

az átfogó tematikus kohézió mérettől függő tulajdonságát a 3. ábra szemlélteti. Megállapítható, hogy a vizsgált 

CIA szövegek esetén az OTC metrika minden esetben 85% feletti, tehát jól méri a szöveg tartalmi 

összetartozását. Ugyanakkor az is megfigyelhető, hogy az OTC a szövegek szavainak számától is függ. Minél 

hosszabb a koherens szöveg, annál nagyobb az OTC értéke is a (0, 1) intervallumban. Ezt várhatóan az okozza, 

hogy a szerző több stilisztikai eszközt tud használni a nagyobb szövegnél a szövegentitások összekötéséhez. 

A Di idősorok szórása a szöveg tartalmi témaváltásának mértékét méri. Az N darab elemzett CIA 

szöveg esetén ezek a témaváltások egy hatványfüggvénnyel közelíthetők. Ezt szemlélteti a 3. ábra jobb oldala, 

ahol a log-log skálán egyenesek által határolt területünk van. Itt is megfigyelhető, hogy a szórás mértéke a 

szöveg szavakban kifejezett számától függ. Hosszabb szövegek szórása erőteljesebben eltér egymástól, mint a 

rövidebb szövegeknél. Ezt okozhatja a szókincs változatossága az egyes szerzők szövegében.  

 

  
3. ábra. A szövegek kohézió metrikái: bal) Átfogó tematikus kohézió; jobb) Témaváltás intenzitás. 

 

A 𝑇𝑖 szövegnek a 𝐷𝑖 idősor által képviselt dinamikája az elemzett CIA szövegek esetén zömében 70% 

felettiek (ld. 4. ábra bal oldal). A 𝐷𝑖 mintázatok kisebb szövegnél nagyobb kilengéseket tartalmaznak, míg 

hosszabb szövegek esetén ez kevésbé változik adott szövegen belül. Ezt látjuk a 4. ábra bal oldalán lévő 

vetületeknél is. Ennek oka a szövegentitások méretéből adódó erősebb korreláció rögzített 𝑖 esetén az 𝐹𝑉𝑖
𝑗
 és 

az 𝐹𝑉𝑖 között 𝑗 = 1, … , 𝑚 értékekre. Ez a kohézió növekedését is okozza a mérettel.  

 

  
4. ábra. A szövegek hasonlóság metrikája: bal) Koszinusz távolság az alszöveg- és a szövegazonosító 

függvényében; jobb) A szövegek klaszter számának függése a sugártól. 

 

Adott 𝑇𝑖 szöveg 𝐹𝑉𝑖
𝑗
, 𝑗 = 1, … , 𝑚 hasonlóság jellemzőinek klaszterbe sorolásához DBScan algoritmust 

is használtunk. Mivel azonban a DBScan erőteljesen függ az (𝑟, 𝑀𝑖𝑛𝑃𝑡𝑠) klasztersugár, illetve minimális 

elemszám paraméterektől, ezért több próbálkozással határoztuk meg ezek optimális értékét (ld. 4. ábra jobb 

oldal). Ha a klaszter tagjainak minimális számát (MinPts) kicsire vesszük, akkor sok kis csoport alakítható ki 

akkor is, ha a klaszter sugara kicsi. Ha a klaszterek minimális sugarát növeljük, akkor egyre több elem 

sorolható be ugyanabba klaszterbe, így a csoportok száma egyre csökken, mígnem az összes elem egyetlen 

közös csoportba sorolódik. A két paraméter helyes értékének meghatározása DBScan esetén úgy történik, hogy 

a néhány tagszám előírás mellett a csoportok számának sugártól való függésnél a legmeredekebb csökkenés 

közepét választjuk. Ez alapján az alkalmazott kombináció: (𝑟, 𝑀𝑖𝑛𝑃𝑡𝑠) = (5%, 5).  
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3.3. Első- és másodrendű Markov láncok alkalmazása 

Három különböző klaszterezési algoritmust használtunk adott 𝑇𝑖 szöveg 𝐹𝑉𝑖
𝑗
, 𝑗 = 1, … , 𝑚 tulajdonság 

vektorainak csoportosításához. Minden esetben Koszinusz távolság metrikát használtuk. Ismeretes, hogy a 

klaszterbe sorolása mérhető mennyiségeknek tulajdonképpen egy kerekítési tevékenység. Ezáltal adott 𝑇𝑖 

szövegnél az m darab, sorban következő tulajdonság vektor 𝑐𝑖
𝑀ó𝑑𝑠𝑧𝑒𝑟 < 𝑚 darab klaszterbe sorolódik be, 

vagyis klaszterezési módszertől függően más-más klaszterszámot kapunk. Az egyes klaszter azonosítókat egy-

egy állapotnak tekintjük a Markov lánc számára. Így az 𝐹𝑉𝑖
𝑗
, 𝑗 = 1, … , 𝑚 vektor egy 𝑐𝑖

𝑀ó𝑑𝑠𝑧𝑒𝑟 elemű állapot 

sorozatot ad, amiben meghatározható az állapotok egymásutánja. Ezt a jelen dolgozat 2. szekciójában tárgyalt 

{𝑋𝑡}, 𝑡 ≥ 0 sorozatnak tekintjük és a keveredési (vegyitési) idő értékét számoljuk. Elsőrendű, illetve 

másodrendű Markov láncként kezelve az {𝑋𝑡}, 𝑡 ≥ 0 sorozatot, a T15 szöveg esetén a három klaszterezési 

módszer alapján kapott állapot gráf, illetve sajátérték ábrákat az 5., illetve 6. ábra szemlélteti.  

   

   

   
5. ábra. A T15 szöveg elsőrendű Markov tranzíciós gráfja és tranzíciós mátrixának sajátértékei: a) 

DBSCAN algoritmussal; b) Linkage algoritmussal; c) k-Means algoritmussal kapott eredmények. 

 

Megállapítottuk az alábbiakat: 

i) A DBScan lényegesen több klaszterbe sorolja be az 𝐹𝑉𝑖
𝑗
, 𝑗 = 1, … , 𝑚 tulajdonság vektorokat, 

függetlenül a Markov lánc emlékezetétől. 

ii) A klaszterek száma a Linkage és a K-Means esetében nem egyértelműen rangsorolható. Ez a 

sajátértékek darabszámával is egyértelműen igazolható. 

iii) Az elsőrendű Markov lánc gyorsabb konvergenciával (kisebb keveredési idővel) rendelkezik, mint 

a másodrendű Markov lánc. 

Egy elsőrendű Markov-láncnak kisebb a keverési ideje, mint egy ugyanazon az állapothalmazon 

definiált másodrendű Markov-láncnak. Egy elsőrendű lánc csak az aktuális, 𝑋𝑡 állapotra emlékszik Egy 

másodrendű lánc két korábbi állapotra emlékszik (𝑋𝑡−1, 𝑋𝑡), ami gyakorlatilag egy új, 𝑛2 méretű állapotteret 

hoz létre, ahol 𝑛 az állapotok darabszáma. A 𝜏𝑚𝑖𝑥 keverési idő nagyjából az 1 − |𝜆2|, spektrális rés reciproka, 

ahol |𝜆2| a tranzíciós mátrix második legnagyobb sajátértéke nagyságrendben. Egy másodrendű láncot 

elsőrendű láncként ábrázolunk 𝑛2 összetett állapotokon. Ez kisebb spektrális réshez vezethet, azaz 1-hez 

közelebbi sajátértékekhez, mert az (𝑋𝑡−1, 𝑋𝑡) memória lelassítja az információ elfelejtésének sebességét. A 

lánc bizonyos kétlépéses kontextusokban hosszabb ideig beragadhat. Az állapotgráf gyakran kevésbé 

összefüggővé és inkább blokkszerkezetűvé válik, ami növeli a korrelációs időt. Az elsőrendű lánc gyorsan 
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elfelejti a múltat, ezért gyorsabban keveredik. A másodrendű lánc extra memóriát hordoz, ezért lassabban 

keveredhet.  

Trajektória és stílusváltások felismerése terén a jellemzők sorozata gyakran fokozatos stílus- vagy 

témaváltást mutat. A másodrendű átmenetek a változás irányát (momentumát) is kódolják. Nemcsak azt látjuk, 

„hol vagyunk” 𝑋𝑡, hanem azt is, „honnan jöttünk” (𝑋𝑡−1, 𝑋𝑡), ami segít felismerni a tendenciákat (pl. növekvő 

bonyolultság, változó dinamika). A másodrendű modell nemcsak állapotokat, hanem jellemzőátmeneteket is 

felismer, ami segít azonosítani ismétlődő szerkezeti vagy stílusmintákat. 

 

   

   
6. ábra. A T15 szöveg másodrendű Markov tranzíciós gráfja és tranzíciós mátrixának sajátértékei: a) 

DBSCAN algoritmussal; b) Linkage algoritmussal; c) k-Means algoritmussal kapott eredmények. 

 

A keveredési idő értéke függ az alkalmazott klaszterezési módszertől. Ezt szemléltetik a 7. ábra két 

grafikonja, amelyek az elsőrendű, illetve másodrendű Markov láncok keveredési idejének állapotterében 

jelenítik meg az N darab szöveget. Elsőfokú Markov láncnál kialakított állapottérben a szövegek egyetlen 

csoportba sorolhatók (ld. 7. ábra bal oldal). Ez azt igazolja, hogy a CIA témájú szövegek témaköre hasonló 

megközelítések alapján ismertetik a mondanivalót. A másodrendű Markov láncok esetén készült állapottérben 

viszont a szövegek két fő csoportra tagolhatók, miközben megjelentek egyedi stílusú írások is. Ez jól mutatja, 

hogy a másodrendű Markov láncokkal történő elemzés másfajta részletekre is figyel a szövegek dinamikáját 

illetően (ld. 7. ábra jobb oldal).  

  

  
7. ábra. Markov lánc vegyítési ideje a DBScan, Linkage és K-Means klaszterezési térben.  

bal) Elsőrendű Markov lánc; jobb) Másodrendű Markov lánc. 
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Az átlagos keveredési idő az elsőfokú és másodfokú Markov láncok segítségével a 30 elemzett CIA 

szövegnél egyértelműsíti a memória hatását. A másodrendű Markov lánc a hosszabb memóriája miatt 

stabilabban, de lassabban konvergál az állapotváltások egyensúlya felé (ld. 8. ábra bal oldal).  

 

  
8. ábra. Átlagos vegyítési idők Markov láncoknál (DBScan, Linkage és K-Means klaszterezésekből):  

bal) Elsőrendű (M1) és másodrendű (M2) Markov lánc a szöveg hossza alapján; jobb) (M1, M2) scatter.  

 

Az átlagos keveredési idők szóródás (scatter) ábrája egy nagyobb és egy kisebb sűrűségű tömörülést 

mutat (ld. 8. ábra jobb oldal). Ez a jelenség tipikus, ha a szövegek különböző belső rendezettségűek: pl. 

egyesek inkább véletlen jelsorozat-szerűek, mások szabályos nyelvi szerkezetet mutatnak. 

4.  ÖSSZEFOGLALÁS 

A dolgozat a kvantitatív nyelvészet eszközeivel vizsgálja a szövegek kohézióját és dinamikáját, vagyis 

azt, hogyan kapcsolódnak össze a szövegrészek és miként bontakozik ki bennük a narratíva. A szöveget 

egymás utáni szövegegységek (szövegentitások) sorozataként kezeljük, melyeket 17 szófaj kategória arányait 

tartalmazó tulajdonságvektorokkal írnak le. A vizsgálat 30, a Central Intelligence Agency (CIA) digitális 

könyvtárából származó, politikai és katonai témájú angol nyelvű szövegen alapul. A szövegentitások és a teljes 

szöveg globális tulajdonság vektorának hasonlóságát Koszinusz-távolság segítségével számítottuk, amelyből 

Di idősort képeztünk, és ennek átlaga adta az adott szöveg átfogó tematikus kohézió (OTC) mérőszámát. Az 

OTC értékek minden esetben 85% felettiek, és összefüggést mutatnak a szöveghosszal: hosszabb szövegek 

kohéziója nagyobb. A témaváltások intenzitását a Di idősor szórása jellemzi, amely szintén a szöveghosszal 

arányosan nő. A szerzők a szövegdinamika modellezésére első- és Markov-láncokat alkalmaznak, és a 

szövegek kohéziós szerkezetének statisztikai tulajdonságait a spektrális rés (1−|λ₂|) segítségével vizsgálják. 

Eredményeik szerint a szövegek kohéziója és dinamikája kvantitatív módon mérhető, és ezek a jellemzők 

szorosan összefüggnek a szövegek hosszával és a szerző stílusával. Elsőrendű modell csak az aktuális 

állapotból jósolja a következőt. A másodrendű modell a két előző állapotot is figyelembe veszi, ezért képes a 

lokális kontextust jól megragadni, míg az elsőrendű erre nem képes. 
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