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Abstract

Modern artificial intelligence systems—especially deep-learning and generative models—contain numerous
non-deterministic components. Stochastic learning, parallel execution, data augmentation, and GPU-
dependent floating-point operations affect testability. This can lead to variance in outputs, intermittently
failing (unstable) tests, and results that are difficult to reproduce. The paper examines the sources and
mitigation of non-deterministic behavior and proposes stable metrics and measurement protocols.

Keywords: Artificial intelligence, software testing, reproducibility of results, performance evaluation,
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Kivonat

A modern mesterséges intelligencia rendszerek — kiilonosen a mélytanulo és generativ modellek — szamos nem-
determinista komponenst tartalmaznak. A sztochasztikus tanulds, a parhuzamos futtatas, az adat-augmentacio,
GPU-fiiggo lebegdpontos miiveletek a tesztelhetdoséget befolydsoljak. Ez a kimenetek variancidjahoz, nem
stabilan viselkedo tesztekhez és nehezen reprodukalhato eredményekhez vezethet. A cikk a nem-determinista
viselkedés forrasaival, kezelésével, stabil metrikak és mérési protokollok kialakitasaval foglalkozik.

Kulcsszavak: mesterséges intelligencia, szoftvertesztelés, reprodukalhatosag, kiértékelés, szoftvermetrika

1. BEVEZETES

A mesterséges intelligencia (MI) alapt alkalmazasok rohamos terjedése 11 mindségbiztositasi és
tesztelési paradigmakat kovetel meg. Az MI-rendszerek sajatossdga, hogy viselkedésiiket a tanitoadat
¢és a futtatasi kornyezet egyiitt alakitja; a funkcionalitas jelent0s része nem explicit kodszabalyokbdl,
hanem statisztikai mintazatokbdl ,tanulddik ki”. Emiatt a klasszikus tesztelési megkdzelitések —
amelyek stabil specifikaciora és determinisztikus viselkedésre épiilnek — 6nmagukban nem elegenddek.
A szakirodalom az ilyen rendszerek koriil felhalmozodo rejtett technikai problémara (pl. adat-/modell-
Osszefonddas, metrikafiiggdség) is figyelmeztet, amely a karbantartasi koltségeket és a hibakockazatot
egyarant noveli [1].

Az ipari gyakorlat azt mutatja, hogy az Ml-fejlesztés életciklusat (adatgyijtés, kisérletezés, tanitas,
integracio, telepités, monitorozas) a hagyomanyos szoftvermérnoki folyamatokba kell illeszteni, de ezek
a folyamatok tobb ponton modosulnak: né az adatel6készitésre forditott eréfeszités, a hibak jelentds
része adat- és konfiguracios eredetii, és Uj kompetencidk valnak kulcsfontossagiva [2]. Empirikus
vizsgalatok szerint a legnagyobb ipari nehézségek a tesztadatok eldallitasanal, a tesztvégrehajtasnal és
az eredmények értelmezésénél jelentkeznek; mindezt modszertani és eszkoztamogatasi hidnyok
sulyosbitjak [9].

Az Ml-rendszerek tesztelésének egyik alapvetd nehézsége az, hogy a varhatd helyes viselkedés sok
esetben nem irhat6 le egzakt specifikacioval. Ezért elotérbe keriilnek a tulajdonsagalapu és relacidalapt
modszerek, kiilonosen a metamorf tesztelés (MT), amelyben elére megfogalmazott metamorf relaciok
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(pl. invariancidk, monotonitas, ekvivalens transzformaciok) alapjan kovetkeztetiink a kimenetek
konzisztencidjara [4].

A mélytanulas sajatos kockazatait vizsgalod kutatasok 0j kritériumokat és tesztelési megkdzelitéseket
vezettek be. A DeepXplore neuron lefedettség- (neuron coverage) és tobbmodell-differenciara épitd
fehér-dobozos technika, mig a DeepTest valosaghti képfeltételek (pl. kod, esd, fényviszonyok)
generaldsaval keresi a specialis eseteket autonom vezetési rendszerekben. Emellett a DeepGauge tobb-
finomsagi osztalyba tartozo fedettségi mutatokat javasol (réteg-, neuronszintli €s aktivacios statisztikak),
a kombinatorikus tesztelés pedig a neuralis allapottér robbanasat csokkenti a tesztesetekkel valo
lefedettséget figyelembe vevd input-konstrukcioval [5—8]. Ezek a modszerek ugyan nem helyettesitik a
klasszikus funkcionélis ¢és nem-funkciondlis teszteket, de kifejezetten az MI-specifikus hibak
(robosztussag, generalizacios hianyossagok, érzékenység) feltarasara fokuszalnak.

2. OSZTALYOZAS JELLEGU FELADATOK

Az MI alkalmazasi teriileteinek egy jelentOs része osztalyozas jellegli [10]. Az osztalyozok elkiilonitd
képessége azt méri, mennyire rangsorolja a modell ,.feljebb” a valdédi pozitiv eseteket a negativaknal,
fliggetleniil attol, hol huzzuk meg a dontési kiiszobot. A legelterjedtebb kiiszobfiiggetlen mutatd [15-16] a
ROC-gorbe alatti teriilet (ROC-AUC), amely a véletleniil valasztott pozitiv magasabb pontszamot kap, mint
egy véletleniil valasztott negativ esemény valoszintiségeként is értelmezhetd; széles korben hasznalhato
altalanos szeparacids mérészamkeént.

Erdsen kiegyenstlyozatlan adatoknal — amikor a pozitiv osztaly ritka — informativabb a precizio—
visszahivas térben mért PR-AUC, azaz atlagos precizio, mert kdzvetleniil a pozitiv osztaly teljesitményére
koncentral, és a taldlati arany—visszahivas kompromisszumat ragadja meg; a szakirodalom kimutatja, hogy
ilyen helyzetekben a PR—gorbe és az abbodl szarmaztatott teriilet jobban tiikrzi a gyakorlati hasznossagot, mint
a ROC-AUC.

Ha egyetlen kiiszobhoz szeretnénk 6sszefoglalészamot, a Matthews-korrelacios egyiitthato (MCC) és a
kiegyensulyozott pontossag kevésbé torzit az uralkodd osztaly iranyaba, mert a teljes konfuzids matrix

crer

MCC kiilondsen robusztus alternativa az egyszerii pontossaggal vagy az F1-gyel szemben.
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1. abra. ROC-gorbe
2.1 KALIBRACIO

Az osztalyozasban a kalibracio azt irja le, mennyire felelnek meg a modell altal kiadott valoszinliségek
a tényleges gyakorisagoknak. A kalibracié nem azonos az elkiilonitd képességgel: eléfordulhat, hogy egy jol
szeparalo modell sulyosan tal- vagy alulmagabiztos. A leggyakrabban hasznalt pontozofiiggvények példauk a
Brier-pontszam és a negativ log-valdszinliség (log-loss) kifejezetten jutalmazzak a helyes valdsziniiségeket:
elméleti értelemben akkor és csak akkor minimalisak, ha a becslések megegyeznek az igaz valoszintiségekkel,
ezért stabil alapot adnak a kalibracio szamszertsitésére [11][12][13].

A kalibracié diagnosztikajahoz a kalibracios gorbe (reliability diagram) nyujt szemléletes képet: a
becsiilt valoszinliségek atlagait vetjiik 6ssze a megfigyelt talalati aranyokkal, és azt varjuk, hogy a gorbe a
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foatlo kozelében fusson. A gorbe 0sszegzd, skalazhatdo megfeleldje az Expected Calibration Error (ECE),
amely a binelt eltérések stlyozott atlaga; a modern mélyhalok tipikusan tulmagabiztosak, amit az ECE ¢és a
reliability diagram egyiitt jol feltar, kiilondsen akkor, ha konfidenciaintervallumokat is kozliink [14]. A
pontozofiiggvények és a grafikus/aggregalt mérdk egylittese gyakorlatban is bevalt: a Brier/log-loss numerikus
stabilitast és dontéselméleti megfelelést ad, a gorbe és az ECE pedig a hibatipus (alul- vagy tulkalibraltsag)
természetét vilagitja meg [11][12][14].

2.2 TIPIKUS MI FELADATOK

Az alabbi tablazat gyors attekintést ad a leggyakoribb MI-feladatokrol, és 6sszerendezi 6ket a megfeleld
tanulési paradigmakkal, kimenettipusokkal, tipikus bemenetekkel. Lathatd, hogy a feladatok nagy szdma miatt
altalanosan tesztelési metodika helyett feladatspecifikus megkozelités sziikséges.

1. tablazat — Tipikus MI feladatok

Feladat Tanuldsi paradigma Kimenet tipusa Tipikus bemenet/modalitas

Bma'rls ,/ t0bbosztélyos Feliigyelt Cimke (diszkrét) Tablazatos, szoveg, kép

osztalyozas

Regresszid Feliigyelt Valos érték Téblazatos, idésortablazat

Rangsorolas / | Feliigyelt / tanar-nélkiili . Keresési lekérdezés  +

- s i Ly Rendezett lista . .

informacidkeresés jelzéssel dokumentum jellemzék

Anoméliadetektalds Fel}lgyelt / fehﬂg 'felugyelt / Binaris/score Id6sor,  halézati  napld,

feliigyelet nélkiili szenzor

Klaszterezés Feliigyelet nélkiili Csoportcimke (utdlag) Tablazatos, szoveg, kép

Dimenziocsokkentés / | Feliigyelet nélkiili / . . . .. . (1
P PR Beagyazas Kép, szoveg, multimodalis

reprezentaciod onfeliigyelt

Objektumdetekcid (kép) Feliigyelt Doboz + cimke Kép

(Skzgrr)l)lantlkus szegmentalds Feliigyelt Pixelcimke térkép Kép

Gépi forditas (NLP) Feliigyelt / onfeliigyelt Szoveg Parhuzamos korpusz

Kérdés—valasz / olvasasértés | Feliigyelt Szbéveg / span Korpuszbdl kivonat

Beszédfelismerés (ASR) Feliigyelt Szoveg Hang

Ajéanlorendszerek Feliigyelt / implicit Top-N lista / score Kliens x tétel logok

Megferqsﬁeses tanulds RL Politika / akcio Allapot-atmenetek

(vezérlés)

Id6sor-eldrejelzés Feliigyelt Idésor Univarians/multivarians TS

Multimodalis tanulas Feliigyelt / onfeliigyelt Kiilonféle Kép+szoveg, képthang

3. UZEMELTETESI METRIKAK MI-SZOLGALTATASOKHOZ

Egy Ml-rendszernek nemcsak okosnak, hanem folyamatosan elérhetének, gyorsnak és megfizethetének
is kell lennie. Az lizemeltetési metrikak azt figyelik, hogyan teljesit a szolgaltatds mint egész: milyen gyorsan
valaszol, mennyi hibat termel, mennyire stabil a terhelés alatt, €s mindezt milyen er6forras- és pénzkoltséggel
éri el. Ezek a mutatok kiegészitik a modell pontossagat: lehet egy modell kivalod offline, ha kdzben a
felhasznalo a lassusag vagy a gyakori hibak miatt elpartol.

A sebességet legjobban a késleltetés percentilisei irjak le [22][23] A p95 példaul azt jelenti, hogy a
kérések 95%-a ezen id6 alatt valaszt kap; a felhasznaloi élményt jellemzben nem az atlag, hanem a kiegészitd
halmaz (p95—p99) hatarozza meg, mert a ritka, de nagyon lassu valaszok is frusztralok. Nagy forgalomban az
apro késleltetések 0sszeadodnak, ezért fontos az olyan tervezés, amely nem noveli feleslegesen a parhuzamos
hivasok szamat, és értelmes idékorlatokkal, Gjraprobalasokkal kezeli a lassulasokat.

A hibaarany 6nmagaban kevés, ezért érdemes kiilon-kiilon kdvetni a klienshibakat (rossz kérés), a
szerverhibakat (belsd hiba), a modell-szolgaltatasi problémakat (idotallépés, nincs betoltdtt modell), valamint
az adatmindségi gondokat (hianyzo vagy késve érkezd jellemzok). A pontos diagnézis kulcsa a metrikdk
szegmentalasa végpont, régio, tigyféltipus és modellverzid szerint, mert a problémak gyakran csak az egyik
szeletben jelentkeznek.

Hogy mindez ne csak mérés, hanem vallalas is legyen, szolgaltatasi célokat megfogalmazni. Egy
egyszeru példa: ,,a p95 késleltetés 120 ms alatt marad, a sikeres valaszok ardnya pedig legalabb 99,9%”. MI-
szolgaltatasnal ezek mellé keriilnek modell-szintii célok is, példaul hogy a valds felhasznaloi visszajelzés
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alapjan a pozitiv jelzések pontossaga egy napon beliil bizonyos szint felett legyen. Az ilyen célok segitenek
abban, hogy a kiadasok ¢és kisérletek ne rontsak le észrevétleniil a szolgaltatas mindségét.

A koltség és a kapacitas kiilon figyelmet érdemel. Praktikus a koltséget egységes formaban jelenteni
(koltség/1000 kérés vagy koltség/elorejelzés), és mellette mérni a GPU/CPU kihasznaltsagot, a batch-méretet,
a parhuzamossagot és a gyorsitotar talalati aranyat. Ezek egyiitt mutatjak meg, hol szivarog el a pénz: sokszor
nem is a modell ,,draga”, hanem a kis batch-ek, a gyakori modell-betoltések (cold start) vagy a rosszul
méretezett skalazas.

A valos lizleti sikerességet az egyéb min6ségi mutatok jelzik. Ajanlorendszernél ilyen a kattintasi arany
vagy a konverzio, keresésnél a talalati oldalak mélysége €s a visszapattanas.

Az adatok és a modell frissessége lizem kdzben folyamatosan romolhat, ha valtozik a kérnyezet. Emiatt
érdemes Onalloan mérni, mennyire frissek a jellemzok (adatkor), mekkora a kiilonbség a tanitaskor és a
kiszolgalaskor hasznalt be-/kimenetek kozott és kimutathato-e eloszlaseltolodas a forgalomban. Ilyenkor
segitenek a reprodukalhato, statisztikai 6sszehasonlité tesztek; nem az a cél, hogy minden apro6 eltérést riasztas
kovessen, hanem hogy a lényeges valtozasokat idében észrevegyiik és Ujratanitdssal, utokalibralassal
reagaljunk.

Végiil érdemes figyelni a modell bizonytalansagara is. Ha egy id0szakban hirtelen megemelkedik a
bizonytalan elérejelzések aranya, az gyakran a bejovo adatok valtozasat jelzi. Ilyenkor hasznos lehet ideiglenes
védelmi 1épés (példaul alacsonyabb kockazati szabalyok alkalmazasa), mikdzben elindul a tényleges okok
kivizsgalasa és a modell frissitése.

az lizemeltetési metrikak akkor segitenek a legtobbet, ha egyszerre fedik le a sebességet, a hibakat, a
rendelkezésre allast, a koltséget és a vald életbeli mindséget; ha a célokat elére rogzitjilk és mérhetéen
kovetjiik; és ha minden fontos mutatot értelmes szeletekre bontva, a felhaszndloi élmény szempontjabol
vizsgalunk.

4. SPECIFIKACIOS NEHEZSEGEK

A helyes viselkedés tipikusan kontextusfiiggd, ezért altaldnosan nem adhaté meg teljes, zart
specifikacioval. Egyrészt a miikodési kornyezet nyitott és dinamikus: a relevans tényezok (adatdisztribucio,
jogi eldirasok, felhasznaloi preferenciak, ellenfél-modellek) idoben valtoznak, igy a rogzitett kovetelmények
gyorsan elavulnak. Masrészt a helyesség normativ komponenseket is tartalmaz (pl. méltanyossag,
artalomminimalizalas, tarsadalmi elvarasok), amelyek csak részlegesen formalizalhatok. Harmadrészt a
rendszerek nagy allapottérrel és nemlinedris kolcsonhatasokkal rendelkeznek; ez a kombinatorikus
komplexitas a teljes korti leirast gyakorlati és elméleti korlatok (pl. eldonthetetlenség) miatt is ellehetetleniti.

A mérnoki gyakorlat ennek megfelelden rétegzett megkozelitést alkalmaz. A kritikus tulajdonsadgokat
szigoru invariansok és formalis tulajdonsagok (id6logikai korlatok, biztonsagi limitaciok) rogzitik, mig a
teljesitményjellegii célok szolgaltatasi szintli mutatokkal (percentilis késleltetés, hibaarany, hamis riasztas)
keriilnek kalibralasra. A nem determinisztikus vagy adatvezérelt komponenseket futasidejii teszteknek kell
alavetni.

Kiilonosen fontos az emberi szerep beépitése a folyamatba. A ,human-in-the-loop” nem a gép
gyengeségének, hanem a tarsadalmi bedgyazottsag elismerésének jele. A homalyos, nagy kockazati vagy
normativ megfontolast igényld szituacidkban legyen vilagos, hogyan és mikor 1ép kdzbe emberi dontéshozo,
hogyan dokumentaljuk a dontési indokokat, és miként tanul a rendszer a visszajelzésekbol.
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