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Abstract 

Modern artificial intelligence systems—especially deep-learning and generative models—contain numerous 

non-deterministic components. Stochastic learning, parallel execution, data augmentation, and GPU-

dependent floating-point operations affect testability. This can lead to variance in outputs, intermittently 

failing (unstable) tests, and results that are difficult to reproduce. The paper examines the sources and 

mitigation of non-deterministic behavior and proposes stable metrics and measurement protocols. 

Keywords: Artificial intelligence, software testing, reproducibility of results, performance evaluation, 

software metrics 

Kivonat 

A modern mesterséges intelligencia rendszerek – különösen a mélytanuló és generatív modellek – számos nem-

determinista komponenst tartalmaznak. A sztochasztikus tanulás, a párhuzamos futtatás, az adat-augmentáció, 

GPU-függő lebegőpontos műveletek a tesztelhetőséget befolyásolják. Ez a kimenetek varianciájához, nem 

stabilan viselkedő tesztekhez és nehezen reprodukálható eredményekhez vezethet. A cikk a nem-determinista 

viselkedés forrásaival, kezelésével, stabil metrikák és mérési protokollok kialakításával foglalkozik. 

Kulcsszavak: mesterséges intelligencia, szoftvertesztelés, reprodukálhatóság, kiértékelés, szoftvermetrika 

 

1. BEVEZETÉS  

A mesterséges intelligencia (MI) alapú alkalmazások rohamos terjedése új minőségbiztosítási és 

tesztelési paradigmákat követel meg. Az MI-rendszerek sajátossága, hogy viselkedésüket a tanítóadat 

és a futtatási környezet együtt alakítja; a funkcionalitás jelentős része nem explicit kódszabályokból, 

hanem statisztikai mintázatokból „tanulódik ki”. Emiatt a klasszikus tesztelési megközelítések – 

amelyek stabil specifikációra és determinisztikus viselkedésre épülnek – önmagukban nem elegendőek. 

A szakirodalom az ilyen rendszerek körül felhalmozódó rejtett technikai problémára (pl. adat-/modell-

összefonódás, metrikafüggőség) is figyelmeztet, amely a karbantartási költségeket és a hibakockázatot 

egyaránt növeli [1].  

Az ipari gyakorlat azt mutatja, hogy az MI-fejlesztés életciklusát (adatgyűjtés, kísérletezés, tanítás, 

integráció, telepítés, monitorozás) a hagyományos szoftvermérnöki folyamatokba kell illeszteni, de ezek 

a folyamatok több ponton módosulnak: nő az adatelőkészítésre fordított erőfeszítés, a hibák jelentős 

része adat- és konfigurációs eredetű, és új kompetenciák válnak kulcsfontosságúvá [2]. Empirikus 

vizsgálatok szerint a legnagyobb ipari nehézségek a tesztadatok előállításánál, a tesztvégrehajtásnál és 

az eredmények értelmezésénél jelentkeznek; mindezt módszertani és eszköztámogatási hiányok 

súlyosbítják [9].  

Az MI-rendszerek tesztelésének egyik alapvető nehézsége az, hogy a várható helyes viselkedés sok 

esetben nem írható le egzakt specifikációval. Ezért előtérbe kerülnek a tulajdonságalapú és relációalapú 

módszerek, különösen a metamorf tesztelés (MT), amelyben előre megfogalmazott metamorf relációk 
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(pl. invarianciák, monotonitás, ekvivalens transzformációk) alapján következtetünk a kimenetek 

konzisztenciájára [4].  

A mélytanulás sajátos kockázatait vizsgáló kutatások új kritériumokat és tesztelési megközelítéseket 

vezettek be. A DeepXplore neuron lefedettség- (neuron coverage) és többmodell-differenciára építő 

fehér-dobozos technika, míg a DeepTest valósághű képfeltételek (pl. köd, eső, fényviszonyok) 

generálásával keresi a speciális eseteket autonóm vezetési rendszerekben. Emellett a DeepGauge több-

finomsági osztályba tartozó fedettségi mutatókat javasol (réteg-, neuronszintű és aktivációs statisztikák), 

a kombinatorikus tesztelés pedig a neurális állapottér robbanását csökkenti a tesztesetekkel való 

lefedettséget figyelembe vevő input-konstrukcióval [5–8]. Ezek a módszerek ugyan nem helyettesítik a 

klasszikus funkcionális és nem-funkcionális teszteket, de kifejezetten az MI-specifikus hibák 

(robosztusság, generalizációs hiányosságok, érzékenység) feltárására fókuszálnak.  

2. OSZTÁLYOZÁS JELLEGŰ FELADATOK 

Az MI alkalmazási területeinek egy jelentős része osztályozás jellegű [10]. Az osztályozók elkülönítő 

képessége azt méri, mennyire rangsorolja a modell „feljebb” a valódi pozitív eseteket a negatívaknál, 

függetlenül attól, hol húzzuk meg a döntési küszöböt. A legelterjedtebb küszöbfüggetlen mutató [15–16] a 

ROC-görbe alatti terület (ROC–AUC), amely a véletlenül választott pozitív magasabb pontszámot kap, mint 

egy véletlenül választott negatív esemény valószínűségeként is értelmezhető; széles körben használható 

általános szeparációs mérőszámként.  

Erősen kiegyensúlyozatlan adatoknál – amikor a pozitív osztály ritka – informatívabb a precízió–

visszahívás térben mért PR–AUC, azaz átlagos precízió, mert közvetlenül a pozitív osztály teljesítményére 

koncentrál, és a találati arány–visszahívás kompromisszumát ragadja meg; a szakirodalom kimutatja, hogy 

ilyen helyzetekben a PR–görbe és az abból származtatott terület jobban tükrözi a gyakorlati hasznosságot, mint 

a ROC–AUC.  

Ha egyetlen küszöbhöz szeretnénk összefoglalószámot, a Matthews-korrelációs együttható (MCC) és a 

kiegyensúlyozott pontosság kevésbé torzít az uralkodó osztály irányába, mert a teljes konfúziós mátrix 

információját, illetve az osztályonkénti találati arányt egyformán veszik figyelembe; több vizsgálat szerint az 

MCC különösen robusztus alternatíva az egyszerű pontossággal vagy az F1-gyel szemben.  

 

 

1. ábra. ROC-görbe 

2.1 KALIBRÁCIÓ 

Az osztályozásban a kalibráció azt írja le, mennyire felelnek meg a modell által kiadott valószínűségek 

a tényleges gyakoriságoknak. A kalibráció nem azonos az elkülönítő képességgel: előfordulhat, hogy egy jól 

szeparáló modell súlyosan túl- vagy alulmagabiztos. A leggyakrabban használt pontozófüggvények példáuk a 

Brier-pontszám és a negatív log-valószínűség (log-loss) kifejezetten jutalmazzák a helyes valószínűségeket: 

elméleti értelemben akkor és csak akkor minimálisak, ha a becslések megegyeznek az igaz valószínűségekkel, 

ezért stabil alapot adnak a kalibráció számszerűsítésére [11][12][13]. 

A kalibráció diagnosztikájához a kalibrációs görbe (reliability diagram) nyújt szemléletes képet: a 

becsült valószínűségek átlagait vetjük össze a megfigyelt találati arányokkal, és azt várjuk, hogy a görbe a 
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főátló közelében fusson. A görbe összegző, skálázható megfelelője az Expected Calibration Error (ECE), 

amely a binelt eltérések súlyozott átlaga; a modern mélyhálók tipikusan túlmagabiztosak, amit az ECE és a 

reliability diagram együtt jól feltár, különösen akkor, ha konfidenciaintervallumokat is közlünk [14]. A 

pontozófüggvények és a grafikus/aggregált mérők együttese gyakorlatban is bevált: a Brier/log-loss numerikus 

stabilitást és döntéselméleti megfelelést ad, a görbe és az ECE pedig a hibatípus (alul- vagy túlkalibráltság) 

természetét világítja meg [11][12][14]. 

2.2 TIPIKUS MI FELADATOK 

Az alábbi táblázat gyors áttekintést ad a leggyakoribb MI-feladatokról, és összerendezi őket a megfelelő 

tanulási paradigmákkal, kimenettípusokkal, tipikus bemenetekkel. Látható, hogy a feladatok nagy száma miatt 

általánosan tesztelési metodika helyett feladatspecifikus megközelítés szükséges.  

 1. táblázat – Tipikus MI feladatok 

 
Feladat Tanulási paradigma Kimenet típusa Tipikus bemenet/modalitás 

Bináris / többosztályos 

osztályozás 
Felügyelt Címke (diszkrét) Táblázatos, szöveg, kép 

Regresszió Felügyelt Valós érték Táblázatos, idősortáblázat 

Rangsorolás / 

információkeresés 

Felügyelt / tanár-nélküli 

jelzéssel 
Rendezett lista 

Keresési lekérdezés + 

dokumentum jellemzők 

Anomáliadetektálás 
Felügyelt / félig felügyelt / 

felügyelet nélküli 
Bináris/score 

Idősor, hálózati napló, 

szenzor 

Klaszterezés Felügyelet nélküli Csoportcímke (utólag) Táblázatos, szöveg, kép 

Dimenziócsökkentés / 

reprezentáció 

Felügyelet nélküli / 

önfelügyelt 
Beágyazás Kép, szöveg, multimodális 

Objektumdetekció (kép) Felügyelt Doboz + címke Kép 

Szemantikus szegmentálás 

(kép) 
Felügyelt Pixelcímke térkép Kép 

Gépi fordítás (NLP) Felügyelt / önfelügyelt Szöveg Párhuzamos korpusz 

Kérdés–válasz / olvasásértés Felügyelt Szöveg / span Korpuszból kivonat 

Beszédfelismerés (ASR) Felügyelt Szöveg Hang 

Ajánlórendszerek Felügyelt / implicit Top-N lista / score Kliens × tétel logok 

Megerősítéses tanulás 

(vezérlés) 
RL Politika / akció Állapot-átmenetek 

Idősor-előrejelzés Felügyelt Idősor Univariáns/multivariáns TS 

Multimodális tanulás Felügyelt / önfelügyelt Különféle Kép+szöveg, kép+hang 

 

3. ÜZEMELTETÉSI METRIKÁK MI-SZOLGÁLTATÁSOKHOZ  

Egy MI-rendszernek nemcsak okosnak, hanem folyamatosan elérhetőnek, gyorsnak és megfizethetőnek 

is kell lennie. Az üzemeltetési metrikák azt figyelik, hogyan teljesít a szolgáltatás mint egész: milyen gyorsan 

válaszol, mennyi hibát termel, mennyire stabil a terhelés alatt, és mindezt milyen erőforrás- és pénzköltséggel 

éri el. Ezek a mutatók kiegészítik a modell pontosságát: lehet egy modell kiváló offline, ha közben a 

felhasználó a lassúság vagy a gyakori hibák miatt elpártol. 

A sebességet legjobban a késleltetés percentilisei írják le [22][23] A p95 például azt jelenti, hogy a 

kérések 95%-a ezen idő alatt választ kap; a felhasználói élményt jellemzően nem az átlag, hanem a kiegészítő 

halmaz (p95–p99) határozza meg, mert a ritka, de nagyon lassú válaszok is frusztrálók. Nagy forgalomban az 

apró késleltetések összeadódnak, ezért fontos az olyan tervezés, amely nem növeli feleslegesen a párhuzamos 

hívások számát, és értelmes időkorlátokkal, újrapróbálásokkal kezeli a lassulásokat. 

A hibaarány önmagában kevés, ezért érdemes külön-külön követni a klienshibákat (rossz kérés), a 

szerverhibákat (belső hiba), a modell-szolgáltatási problémákat (időtúllépés, nincs betöltött modell), valamint 

az adatminőségi gondokat (hiányzó vagy késve érkező jellemzők). A pontos diagnózis kulcsa a metrikák 

szegmentálása végpont, régió, ügyféltípus és modellverzió szerint, mert a problémák gyakran csak az egyik 

szeletben jelentkeznek. 

Hogy mindez ne csak mérés, hanem vállalás is legyen, szolgáltatási célokat megfogalmazni. Egy 

egyszerű példa: „a p95 késleltetés 120 ms alatt marad, a sikeres válaszok aránya pedig legalább 99,9%”. MI-

szolgáltatásnál ezek mellé kerülnek modell-szintű célok is, például hogy a valós felhasználói visszajelzés 
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alapján a pozitív jelzések pontossága egy napon belül bizonyos szint felett legyen. Az ilyen célok segítenek 

abban, hogy a kiadások és kísérletek ne rontsák le észrevétlenül a szolgáltatás minőségét. 

A költség és a kapacitás külön figyelmet érdemel. Praktikus a költséget egységes formában jelenteni 

(költség/1000 kérés vagy költség/előrejelzés), és mellette mérni a GPU/CPU kihasználtságot, a batch-méretet, 

a párhuzamosságot és a gyorsítótár találati arányát. Ezek együtt mutatják meg, hol szivárog el a pénz: sokszor 

nem is a modell „drága”, hanem a kis batch-ek, a gyakori modell-betöltések (cold start) vagy a rosszul 

méretezett skálázás. 

A valós üzleti sikerességet az egyéb minőségi mutatók jelzik. Ajánlórendszernél ilyen a kattintási arány 

vagy a konverzió, keresésnél a találati oldalak mélysége és a visszapattanás.  

Az adatok és a modell frissessége üzem közben folyamatosan romolhat, ha változik a környezet. Emiatt 

érdemes önállóan mérni, mennyire frissek a jellemzők (adatkor), mekkora a különbség a tanításkor és a 

kiszolgáláskor használt be-/kimenetek között és kimutatható-e eloszláseltolódás a forgalomban. Ilyenkor 

segítenek a reprodukálható, statisztikai összehasonlító tesztek; nem az a cél, hogy minden apró eltérést riasztás 

kövessen, hanem hogy a lényeges változásokat időben észrevegyük és újratanítással, utókalibrálással 

reagáljunk. 

Végül érdemes figyelni a modell bizonytalanságára is. Ha egy időszakban hirtelen megemelkedik a 

bizonytalan előrejelzések aránya, az gyakran a bejövő adatok változását jelzi. Ilyenkor hasznos lehet ideiglenes 

védelmi lépés (például alacsonyabb kockázatú szabályok alkalmazása), miközben elindul a tényleges okok 

kivizsgálása és a modell frissítése. 

az üzemeltetési metrikák akkor segítenek a legtöbbet, ha egyszerre fedik le a sebességet, a hibákat, a 

rendelkezésre állást, a költséget és a való életbeli minőséget; ha a célokat előre rögzítjük és mérhetően 

követjük; és ha minden fontos mutatót értelmes szeletekre bontva, a felhasználói élmény szempontjából 

vizsgálunk. 

4. SPECIFIKÁCIÓS NEHÉZSÉGEK 

A helyes viselkedés tipikusan kontextusfüggő, ezért általánosan nem adható meg teljes, zárt 

specifikációval. Egyrészt a működési környezet nyitott és dinamikus: a releváns tényezők (adatdisztribúció, 

jogi előírások, felhasználói preferenciák, ellenfél-modellek) időben változnak, így a rögzített követelmények 

gyorsan elavulnak. Másrészt a helyesség normatív komponenseket is tartalmaz (pl. méltányosság, 

ártalomminimalizálás, társadalmi elvárások), amelyek csak részlegesen formalizálhatók. Harmadrészt a 

rendszerek nagy állapottérrel és nemlineáris kölcsönhatásokkal rendelkeznek; ez a kombinatorikus 

komplexitás a teljes körű leírást gyakorlati és elméleti korlátok (pl. eldönthetetlenség) miatt is ellehetetleníti. 

A mérnöki gyakorlat ennek megfelelően rétegzett megközelítést alkalmaz. A kritikus tulajdonságokat 

szigorú invariánsok és formális tulajdonságok (időlogikai korlátok, biztonsági limitációk) rögzítik, míg a 

teljesítményjellegű célok szolgáltatási szintű mutatókkal (percentilis késleltetés, hibaarány, hamis riasztás) 

kerülnek kalibrálásra. A nem determinisztikus vagy adatvezérelt komponenseket futásidejű teszteknek kell 

alávetni. 

Különösen fontos az emberi szerep beépítése a folyamatba. A „human-in-the-loop” nem a gép 

gyengeségének, hanem a társadalmi beágyazottság elismerésének jele. A homályos, nagy kockázatú vagy 

normatív megfontolást igénylő szituációkban legyen világos, hogyan és mikor lép közbe emberi döntéshozó, 

hogyan dokumentáljuk a döntési indokokat, és miként tanul a rendszer a visszajelzésekből.  
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