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Abstract 

We analyzed over 1 million RTT samples from Starlink’s LEO system collected over 30 days, revealing 

significant fine-grained temporal variability. The RTT distribution shows dual peaks, indicating dynamic link-

layer modes. Hourly aggregated features capture behavioral trends, while an autoencoder-based imputation 

reconstructs missing data effectively. We also evaluate RTT characteristics under VPN usage, highlighting 

performance shifts. These insights inform good modelling and robust interpretation of RTT behavior in NTN-

TN integrated networks. 

Keywords: Starlink, Non-Terrestrial Network, Autoencoder, Low Earth Orbit Satellites, Round-Trip Time, 

Machine Learning. 

Kivonat 

A Starlink LEO rendszeréből 30 nap alatt gyűjtött több mint 1 millió RTT-mintát elemeztünk, amely során 

jelentős, finomszemcsés időbeli változékonyságot tártunk fel. Az RTT-eloszlás kettős csúcsokat mutat, ami 

dinamikus adatkapcsolati üzemmódokat sugall a szolgáltatásra vonatkozóan. Az óránkénti összesített 

jellemzők rögzítik a viselkedési trendeket, míg az autoenkóder hatékonyan rekonstruálja a hiányzó adatokat. 

VPN-használat esetén is értékeljük az RTT-jellemzőket, kiemelve a teljesítménybeli eltolódásokat. Ezek a 

jellemző metrikák megfelelő modellezést és az RTT viselkedésének hatékony értelmezést teszik lehetővé NTN-

TN integrált hálózatokban. 

Kulcsszavak: Starlink, nem Földi hálózat, autoenkóder, alacsony Föld körüli pályán keringő műholdak, 

körforgási idő, gépi tanulás. 

1.  BEVEZETÉS 

A műhold alapú nem földi hálózati (NTN – Non Terrestrial Network) szolgáltatásra való növekvő 

támaszkodással az elmúlt öt évben elindították a SpaceX által üzemeltetett műholdas internet-konstellációt, az 

úgynevezett Starlinket. Ez jelentős javulást jelent az alacsony Föld körüli pályán (LEO – Low Earth Orbit) 

keringő műholdakon keresztüli internetkapcsolat biztosításában, valamint a rosszul lefedett régiók 

lefedettségében. A LEO műholdas kommunikációs kapcsolatok dinamikus jellege azonban a földfelszíni 

hálózatoknál (TN – Terrestrial Network) kisebb változékonyságot eredményez a hálózati teljesítményben, 

például a késleltetésben, a dzsitterben és az átviteli sebességben, ami által kritikus fontosságúvá váltak a valós 

idejű alkalmazások felhasználói élményének minősége szempontjából. 

A körforgási idő (RTT – Round Trip Time) egy széles körben használt mérőszám a hálózati 

kommunikáció késleltetésének felmérésére, amely a csomag forrástól a célállomásig és visszajutásának idejét 

jelenti. Míg a korábbi tanulmányok a műholdas hálózatok átlagos teljesítményét értékelték [1][2], az időbeli 

mintákat, a változékonyságot és a magasabb rendű statisztikai jellemzőket vizsgáló átfogó elemzések továbbra 

is korlátozottak, különösen a felhasználó oldali NTN-telepítések esetében. 

Ebben a dolgozatban egy elemzést mutatunk be, amely Starlink antennáról 30 egymást követő napon 

mintavételezett RTT adatokon alapul, a TN hálózaton lévő nyolc különböző IP csomópont folyamatos 

pingelésével. A mérés során perc léptékű RTT értékeket rögzítettünk, ami lehetővé tette számunkra, hogy 
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minden IP-címhez két időskála szerinti elemzési mátrixokat hozzunk létre, amelyek sorai perceket, az oszlopok 

pedig napokat jelölnek. Ezek a mátrixok nagy felbontású képet adnak a hálózati teljesítmény dinamikájáról 

mind napi, mind hosszabb szintű időskálákon.  

A valós LEO műholdas hálózati mérések, a fejlett jellemzőmérnökség és az időbeli elemzés 

összekapcsolásával a tanulmány célja, hogy hozzájáruljon a TNT és NT heterogén összekapcsolt internetes 

rendszerek teljesítmény-dinamikájának megértéséhez és méréséhez. 

A dolgozat második részében a területen végzett kapcsolódó munkákat tárgyaljuk. Mivel a Starlink 

rendszer belső hálózati architektúrájáról korlátozott mennyiségű nyilvános információ áll rendelkezésre, a 

harmadik részben egy módszertant javasolunk a heterogén NTN és TN hálózatok RTT-metrikáinak 

mintavételezésére, mérésére és vizualizálására. A negyedik részben egy autoenkóder módszer eredményeit 

ismertetjük a hiányzó jellemző adatok pótlására, majd a végén összefoglaljuk a lényeget és következtetéseket 

vonunk le. 

2.  IRODALMI ÁTTEKINTÉS 

2.1. Starlink műhold teljesítménye és jelelemzés 

A legújabb kutatások széles körben vizsgálták a Starlink LEO műholdas hálózatának teljesítményét és 

környezeti hatásait. Ezek a vizsgálatok értékes betekintést nyújtanak a rendszer késleltetési viselkedésébe, a 

jelszerkezetekbe és a műholdas internetes szolgáltatásokkal kapcsolatos kihívásokba. A [3]-ban szereplő 

szerzők egy szimulációs platformot fejlesztettek ki a Starlink Ku-sávú letöltéséhez, amely a kulcsfontosságú 

jelszerkezeteket és a csatornahatásokat modellezi. Ez a munka jól segít az RTT mérésekhez kapcsolódó 

jelviselkedés megértéséhez. Egy másik tanulmányban [4] a kutatók átfogó elemzést nyújtanak a LEO 

műholdas kommunikációs dinamikájáról, a szolgáltatás minőségére, a késleltetésre és a Doppler-eltolódásra 

összpontosítva. Ezáltal alapvető betekintést nyújt a műholdas internetes rendszerek időbeli tulajdonságaiba. 

További szerzők elemzést végeztek a Starlink teljesítményéről egy jelentős napvihar idején, betekintést 

nyújtva a LEO műholdas hálózatok ellenálló képességébe és a kihívásokba, amelyekkel a szélsőséges 

űridőjárási körülmények között szembesülnek [5]. A [6]-ban a Starlink közép-európai mobil teljesítményéről 

készült méréseket mutattak be, az RTT-re, az átviteli sebességre és a csomagvesztésre összpontosítva a 

járművek mozgása során. Mindazonáltal egy másik értékelés is készült a Starlink hálózati teljesítményéről, 

amely a globális internetkapcsolatra gyakorolt hatásait tárgyalja [7]. 

2.2. Jellemző tulajdonság vektor kinyerése és RTT-elemzés a hálózati teljesítményben 

A körbejárási idő kontextusában egy tanulmány azt vizsgálja, hogy a rendelkezésre álló monitorozási 

metrikák hogyan korrelálnak az RTT-ingadozásokkal, és irányokat javasol a teljesítményoptimalizálásra [8]. 

A [9]-ben bemutattak egy SuperFE nevű jellemzőkivonási technikát a forgalmi jellemzők hatékony és 

rugalmas kinyerésére gépi tanulási alkalmazásokhoz. Az értelmes jellemzők kinyerése az RTT-adatokból 

kulcsfontosságú a hálózati teljesítmény megértéséhez és a prediktív modellek fejlesztéséhez. A legújabb 

szakirodalom a jellemzőkinyerés különböző technikáira és azok hálózati elemzésben való alkalmazására 

összpontosított. Ezenkívül a [10]-ben egy másik jellemzőkinyerési technikát javasoltak, amelyet Packet2Vec-

nek neveznek Word2Vec használatával, és amelyet relevánsnak tartanak a hálózati teljesítményelemzés 

szempontjából. A [11] dolgozat szerzői olyan felmérést készítettek, amely áttekinti a gépi tanulási 

megközelítéseket a teljesítmény javítása érdekében a vezeték nélküli hálózatok különböző rétegein, beleértve 

a jellemzőkinyerési technikákat is. Ez másik munka során az IoT-hálózat elemzését egy behatolásérzékelési 

jellemzőkinyerési technikával végezték, amely alkalmazható az RTT-elemzésben is [12]. 

2.3. Autoenkóder alapú adatgenerálás 

Az autoenkóderek, különösen a variációs autoenkóderek (VAE) és a zajszűréses autoenkóderek (DAE), 

hatékony alkalmazhatóságukat bizonyították a hiányzó adatok kezelésében és hasonló adathalmazok 

generálásában. Az adatok rejtett (látens) reprezentációinak megértési képessége alkalmassá teszi ezeket a 

hiányos bemenetek rekonstruálására és a valósághű adatminták szimulálására. A legújabb tanulmányok az 

autoenkóderek hatékonyságát vizsgálták különböző területeken. A szintetikus adatgeneráláshoz használt 

variációs autoenkóderek kontextusában a [13]-ban a szerzők mélyreható áttekintést nyújtanak a VAE-kről, 

kiemelve azok képességét a kiváló minőségű szintetikus adatok generálására, miközben megőrzik a valós 

adathalmazok statisztikai tulajdonságait. Ezen kívül a DAE autoenkóder modell erős előállítási képességet 



XXVI. Enelko – XXXV. SzámOkt 

EMT 69 

mutatott a hiányzó adatok széles skáláján, hangsúlyozva robusztusságukat és alkalmazkodó képességüket [14]. 

A kettős korrupciós DAE (DC-DAE) fokozta az általánosítást és megakadályozta a túlillesztést, ami a [15]-

ben jobb pontosságot eredményezett. 

3.  ALKALMAZOTT MÓDSZERTAN 

Ebben a dolgozatban az egyik széles körben használt műholdas hálózatot, a LEO Starlinket 

tanulmányozzuk és elemezzük. A Starlink egy nagyméretű LEO műhold konstelláció, amelyet a SpaceX 

telepített a globális szélessávú internet-hozzáférés biztosítására. A hagyományos geostacionárius műholdakkal 

ellentétben, amelyek körülbelül 35 786 km-es magasságban keringenek, a Starlink műholdak 340 km és 600 

km közötti magasságban működnek. Ez az alacsonyabb pályamagasság jelentősen csökkenti az oda-vissza 

késleltetést, így alkalmassá teszi a késleltetésre érzékeny kommunikációs alkalmazásokhoz, miközben 

lehetővé teszi a gyors műholdas kapcsolatok roaming-ját és a hálózati teljesítmény fokozott tér-időbeli 

változékonyságát. A LEO rendszerek dinamikus viselkedésük miatt kihívásokkal szembesülnek. Ilyenek a 

Doppler-eltolódás, időben változó kapcsolatminőség, valamint a műholdak és a földi állomások közötti 

gyakori átmenetek. E hálózatok finomszemcsés időbeli viselkedésének megértése folyamatos monitorozást és 

munkamenet szintű elemzést igényel. 

3.1. Adatgyűjtési keretrendszer 

A Starlink LEO műholdas hálózatokon keresztüli RTT viselkedésének elemzéséhez létrehoztunk egy 

adatgyűjtési keretrendszert, amely az Internet Control Message Protocol (ICMP) visszhang kéréseken (azaz 

ping) alapul. Ezeket egy Starlink antennán keresztül forgalmaztuk. A nyolc különböző IP-cím közül öt 

nyilvános (PUB-bal jelölve) és három privát IP-címmel (PRI-vel jelölve) rendelkezett. Az RTT-méréseket 

körülbelül 1,5 másodpercenként végeztük el, ami elegendő az ICMP csomagok válaszidejének mérésére. 

Bizonyos technikai és szolgáltatási megfontolások miatt az RTT-mérések leálltak, ami hiányzó 

intervallumokat okozott a teljes mérési időszak alatt. Az RTT-mérésünk 2025. március 11-én kezdődött és 

2025. május 5-én ért véget, de ebből csak egy 30 napos részt elemeztünk. Ezalatt IP-címenként több mint 

egymillió mintavételt kaptunk. 

3.2. Előfeldolgozás és vizualizáció 

A mérési forgatókönyvben a LEO előfizetői számítógép egymást követő ping-műveleteket hajt végre 

nyolc különböző IP-cím célállomásával. Az adott intézmény első öt IP-címe nyilvános (PUB1, PUB2, …, 

PUB5), az utolsó három célhely pedig privát cím (PRI6, ..., PRI8). A nyilvános célcsomópontok akkor érhetők 

el, amikor a LEO előfizető végrehajtja a mérést. A privát célcsomópontokhoz VPN-en (Virtual Private 

Network) keresztül történt a hozzáférés, a VPN-munkamenet aktív állapota alatt.  

Ping-elt csomópontok funkciója                                                  1. táblázat 

IP cím Típus Csomópont funkciója 

PUB1 Public MAN Domain Name Server 

PUB2 Public MAN Core Level Router 

PUB3 Public MAN VPN Server (Cisco Secure) 

PUB4 Public MAN Core Level Router 

PUB5 Public MAN Core Level Router 

PRI6 Private LAN Core Level Router 

PRI7 Private LAN Campus Level Router 

PRI8 Private LAN Campus Level Router 

 

A célhálózat VPN-kiszolgálója általában naponta véletlenszerűen végrehajtja a munkamenetek lezárását 

a saját hardver erőforrásai megőrzése érdekében, mivel csak korlátos darabszámú egyidejű VPN kapcsolat 

működtetésre képes. A LEO előfizetői gép egymást követő mintavételezéseit az előző ping válasz után 
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(körülbelül 1,5 másodperc) hajtotta végre. A mérési időintervallum második felében a mintavételek ritkasága 

miatt (lásd az 1. és 2. ábrát) az elemzési időintervallumot az első 30 napra csökkentettük. 

 

 

  

1. ábra. A nyilvános IP1 csomópont oda-vissza idő jellemzői (RTT értékek és (az RTT szóródási diagram 
3D hisztogramja). 

Ebben az elemzési időszakban 2025. április 27. körül 10 ms-os növekedést figyelhetünk meg az RTT 

mozgóátlag értékeiben. Ezenkívül a privát IP-címek mintavételezése ritkább a VPN-kiszolgáló hardver 

erőforrás-takarékos tevékenysége miatt. Mindkét 3D hisztogram kettős kiválasztást mutat, ami bizonyítja a 

szolgáltatási mód változását a heterogén NTN és TN hálózatokban (1. és 2. ábra). Az RTT válaszértékek (50, 

250) ms tartományban vannak, ami jól mérhető az 1,5 másodperces időközökben. 

 

  

2. ábra. A privát IP7 cím körfogási idő jellemzői (RTT értékek és az RTT szóródási diagram 3D 
hisztogramja). 

Az ICMP csomagok kiesése esetén megjelenő, 250 ms-nál nagyobb értékeket kizártuk a grafikonokról. 

A hisztogramok 3D aspektusa javítja az RTT értékek egymást követő sorrendjének láthatóságát. 

3.3. Munkamenet-mátrix felépítése és a jellemző vektorok kinyerése 

A mélyebb időbeli elemzés érdekében minden IP-címhez kétdimenziós munkamenet-mátrixot 

képeztünk. A két munkamenet időtartama egy óra, illetve egy nap. Így a mátrix dimenziói a következők voltak: 

sorok: órák száma egy napban (24 óra); oszlopok: napok (csak az első 30 napot vesszük figyelembe). A mátrix 

munkamenet minden 𝑀𝑖𝑗sorozata a j-edik nap i-edik órában mért RTT értékeket jelenti. Meg kell említeni, 

hogy a hiányzó intervallumok miatt nem minden 𝑀𝑖𝑗 munkamenet tartalmaz adatot. Emiatt a munkameneteket 
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három csoportba soroltuk: E (Empty) - üres munkamenet, ami azt jelzi, hogy ebben az időintervallumban nem 

mértek RTT-ket; P (Partial) - részleges munkamenet, ahol a munkamenet tartalmaz RTT-ket, de nem a teljes 

intervallumra vonatkozóan; C (Complete) - teljes munkamenet esetén a munkamenet a megfelelő RTT-kkel 

rendelkezik a teljes időintervallumra vonatkozóan. 

Minden 𝑀𝑖𝑗 munkamenetből egy 10 dimenziós jellemzővektort nyertünk ki, amely az RTT idősorok 

kapcsolódó statisztikai tulajdonságait rögzíti. A 2. táblázat a jellemzők kinyeréshez használt statisztikai 

metrikákat mutatja.  

 

A munkamenetenként kinyert RTT-metrikák                                                                                  2. táblázat 

Metrika 
Szim-
bólum 

Definíció és tulajdonság 

Átlag 𝜇 
Átlagos RTT érték a munkamenet során. A hálózati késleltetés központi 
tendenciáját rögzíti. 

RTT 
tartomány 

𝑅 
A maximális és minimális RTT értékek közötti különbség. Kiemeli a 
volatilitást vagy a börsztösséget. 

Szórás (STD) 𝜎 Az RTT értékek szóródása az átlag körül. Az RTT változékonyságát méri. 

Dzsitter 𝐽 
Az egymást követő RTT értékek közötti átlagos abszolút különbség. Az 
időbeli ingadozást (instabilitást) számszerűsíti. 

Ferdeség 𝑆 
Az RTT eloszlás aszimmetriájának mérése. A magasabb vagy alacsonyabb 
késleltetések felé mutató torzítást azonosítja. 

Hurst 
paraméter 

𝐻 
A hosszú távú függőség becslése (0,5–1). Az RTT mintákban 
memóriahatásokat és önhasonlóságot észlel. 

95 percentilis 𝑃95 
Az RTT érték, amely alá a munkamenet minták 95%-a esik. A legrosszabb 
esethez közeli késleltetést jelzi. 

99 percentilis 𝑃99 
Az RTT érték, amely alá a munkamenet minták 99%-a esik. A késleltetés 
farok viselkedését rögzíti. 

Shannon 
Entrópia 

𝐸𝑠 
Az RTT hisztogram entrópiája (információtartalom). Az RTT értékek 
bizonytalanságát és diverzitását méri. 

Spectrális 
Entrópia 

𝐸𝑓 
A teljesítményspektrum-sűrűség eloszlás entrópiája (FFT-n keresztül). A 
frekvenciatartománybeli szabálytalanságokat és komplexitást azonosítja. 

 

Ezeket a jellemzőket minden IP-címre külön-külön számítottuk ki. A jellemzők többsége a heterogén 

NTN és TN hálózatok kiszolgálási módját érzékeli mind a PUB, mind a PRI címek esetében (lásd a 3. és 4. 

ábrák). 
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3. ábra. A PUB1 IP-csomópont jellemzővektor-metrikái (átlag, dzsitter, 95-ös percentilis és 
Shannon-entrópia). 

Az elemzési időszakban a nyilvános és privát IP-címek válaszintenzitása nagyon eltérő a VPN-kiszolgáló 
tulajdonság miatt.  

 

  

  

4. ábra. A PRI7 IP-csomópont jellemzővektor-metrikái (STD: szórás, ferdeség, 99-es 
percentilis és spektrális entrópia). 
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Miután kiszámítottuk az egyes munkamenetek jellemző vektorait, két kiegészítő távolságmetrika 
segítségével mértük a munkamenetek közötti hasonlóságot: euklideszi és koszinusz távolság. Az euklideszi 
távolság két jellemzővektor közötti abszolút geometriai különbséget mutatja meg, betekintést nyújtva azok 
nagyságrenden alapuló különbségébe. Ezzel szemben a koszinusz-távolság a vektorok közötti szögkülönbséget 
értékeli, hangsúlyozva azok irányultságát a skálától függetlenül. A koszinusz-távolság metrika ebben az esetben 
1-cos(α), ahol α a két 10 dimenziós jellemzővektor közötti szög. Ily módon a koszinusz-metrika kis értékű az α 
kis szög esetén.  

E két távolság feldolgozása jellemzővektorok között történik, amelyek az egymást követő órákban és 
napokon lévő szomszédos munkameneteknek felelnek meg (lásd az 5. ábrát). 

  

5. ábra. A munkamenetre normalizált jellemzővektorok közötti távolság a PUB1 IP-
csomópont vízszintes és függőleges irányában (euklideszi és koszinusz távolságok). 

A távolságábrák az egymást követő munkamenetek fraktál tulajdonságát mutatják, amelyet a 10 dimenziós 
jellemzővektorok jellemeznek (lásd a 3., 4. és 5. ábrát). A távolságábrák homogén területeit az üres 
munkamenetek rései okozzák. A szomszédos jellemzővektorok közötti euklideszi távolság nagyobb 
változékonyságot mutat, mint a koszinusz távolság ugyanazon munkamenet-pár esetében (lásd az 5. ábrát). 

4.  IV. GÉPI TANULÁS FOLYAMATOKHOZ, FUNKCIÓK KÉPZÉSE 

A rekonstruált munkamenet-adatok mögöttes mintázatainak feltárásához a K-Mean klaszterezési 

algoritmust alkalmaztuk K=4 értékkel.  

 

  

6. ábra. Az RTT-munkamenetek klaszterezése (PUB1 és PUB3 IP-csomópontok). 
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Ez a felügyelet nélküli tanulási módszer a jellemzővektorokat négy különálló csoportra osztja a 

klasztereken belüli variancia minimalizálásával és a klaszterek közötti távolság maximalizálásával. A négy 

klaszter kiválasztását empirikusan határoztuk meg az értelmezhetőség és a mintafelbontás egyensúlyának 

megteremtése érdekében. Minden klaszter hasonló RTT-dinamikával rendelkező munkameneteket rögzít, 

lehetővé téve számunkra, hogy megkülönböztessük az alacsony késleltetésű stabil viselkedéseket, a magas 

dzsitter intervallumokat, a részleges zavarokat és az anomáliás mintákat (lásd a 6. ábrát). Ez a klaszterezés 

elősegíti az időbeli teljesítménytartományok mélyebb megértését a megfigyelt IP-címek között. A 

munkamenetek klaszterezési eredménye megfelel az IP-cím típusának (PUB, PRI). A nyilvános címek 

megfelelő munkamenetei között erős korreláció létezik. Hasonló viselkedés figyelhető meg a privát címekhez 

tartozó munkamenetek esetében is. 

A tanulmányban egy autoenkóder modellt alkalmaztunk a technikai zavarok okozta hiányos 

munkamenet-adatok problémájának kezelésére. Az autoenkóderek olyan neurális hálózatok, amelyek célja az 

adatok hatékony reprezentációinak megtanulása a bemenet látens térbe történő tömörítésével, majd annak 

rekonstruálásával. 

 

 

 

 

Az autoenkóder definíciója: 

Bemenet: X_norm; 

Paraméterek:  

        Hiddensize = 16; 

        MaxEpochs = 100; 

        L2WeightRegularization = 0.001; 

        SparsityRegularization = 4; 

        SparsityProportion = 0.05; 

        ScaleData = True; 

7. ábra. A használt autoenkóder modellje és jellemzői. Balra: autoenkóder modell; Jobbra: az 
autoenkóder definíciója. 

A modell teljes munkameneteken történő betanításával az autoenkóder megtanulja az RTT 

jellemzővektorok belső szerkezetét, lehetővé téve számára, hogy valószínűsíthető rekonstrukciókat generáljon 

a hiányzó vagy részben megfigyelt munkamenetekhez.  

 

  

8. ábra. A PUB1 (átlag) és a PRI7 (99. percentilis) IP-csomópontok autoenkóder alapú 

kitöltött jellemzővektor metrikái. 
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Ez a megközelítés nemcsak az adatok időbeli és statisztikai koherenciáját őrzi meg, hanem a későbbi 

elemzés és modellezés megbízhatóságát is növeli. Az autoenkóder kitöltési folyamatának minőségi 

eredményei az üres szomszédos munkamenetek számától függenek. Minél nagyobb az üres szomszédos 

munkamenetek száma, annál homogénebb kitöltési választ hajt végre az autoenkóder (lásd a 8. ábrát). 

A jellemzővektor dimenzióiban lévő különböző metrikák eltérő érzékenységgel rendelkeznek az RTT-

értékek változási frekvenciáira. Az alacsony frekvenciájú események aluláteresztő szűrő jellegű metrikák, 

például az Átlag és a Tartomány metrika segítségével detektálhatók. Ezért a 8. ábrán megfigyelhető a heterogén 

NTN és TN hálózatok két üzemmódja, a 19. napon bekövetkező változással. A nagy frekvenciájú eseményeket 

felüláteresztő szűrő metrikák, például a 99. percentilis és a dzistter detektálják. 

Az autoenkóder által készített kitöltési folyamat mennyiségi jellemzéséhez külön-külön kiszámítottuk 

az eredeti és a kitöltött munkamenet-távolság mátrixok négyzetes középértékének hibáját (RMSE – Root Mean 

Square Error) euklideszi és koszinusz távolságokkal (ld. 3. táblázat). Az eredeti és az autoenkóderrel kitöltött 

munkamenetek jellemző vektorai közötti RMSE szemléletesen érzékelteti az Euklideszi illetve Koszinusz 

távolság metrikák képességét a publikus és a privát IP című csomópontok válaszidejére vonatkozóan.  

 

Az eredeti és az autoenkóderrel kitöltött jellemző vektorok RMSE hasonlósága.                          3. táblázat 

RMSE tartománya PUB IP című csomópontok PRI IP című csomópontok 

Euklideszi távolság 0.66 …0.72 0.58 … 0.64 

Koszinusz távolság 0.17 … 0.22 0.18 … 0.23 

  

A fő különbség a célcsomópontok típusában van. A PUB IP-csomópontok euklideszi távolságának 

tartománya nagyobb, mint a PRI IP-csomópontok tartománya. Ennek oka a teljes munkamenetek nagyobb 

száma az autoenkóderrel kitöltött munkamenetek után. Másrészt azt tapasztaljuk, hogy a koszinusz távolságok 

esetén az RMSE tartomány gyakorlatilag független a célcímek típusától. 

5.  ÖSSZEFOGLALÁS 

Ez a tanulmány a Starlink LEO műhold RTT-adatainak nagy felbontású időbeli elemzését mutatja be, 

kiemelve a változékonyságot mind a napi, mind a hosszú távú skálákon. Több mint 1 millió ping-minta 30 

napon keresztül történő felhasználásával a tanulmány jelentős RTT-ingadozásokat tár fel, amelyeket a 

műholdak dinamikája és a VPN-munkamenet viselkedése befolyásol. Az óránkénti munkamenet-mátrixokból 

származó jellemzők kinyerése időbeli mintázatokat azonosított be, beleértve a kettős RTT-csúcsokat, amelyek 

a szolgáltatási mód változásait jelzik. Egy autoenkóder hatékonyan generálta a hiányzó adatokat, megerősítve 

a módszer hasznosságát a valós NTN-TN rendszerekben. A részletesebb elemzéseket, mint például a Markov-

lánc Monte Carlo-analízisét, a TensorFlow valószínűségét, az RTT és a Starlink műhold pályaparamétereinek 

korrelációját, az autoenkóder rekonstrukciós hibáinak jellemzőtípus szerinti elemzését és a klaszter stabilitását 

RMSE és MAE metrikák alapján, a kutatási munka kibővített változatában értékeljük. 
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