

<u>Development of catalytic sulfoxidation reactions for obtaining</u> <u>sulfonyl- and sulfinyl-based pincer type ligands</u>

Noémi Deák,* Gabriela Nemeș

Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, str. Arany János nr.11, 400028, Cluj-Napoca, Romania, *noemi.deak@ubbcluj.ro

Introduction

Sulfinyl and sulfonyl groups can be found in many different compounds, for example in biologically relevant derivatives, fine chemicals, pharmaceuticals, ligands in catalyst structures, material chemistry, etc.[1] The design and characterization of new compounds containing sulfoxide and/or sulfone moieties, in particular their use in pincer type ligands, represents a topic of importance in our research group as well.[2,3] In the last few years, pincer type ligands that contained such moieties were designed, synthesized then used to obtain p block element containing derivatives.[2]

The scientific progress to the design and synthesis of such derivatives made us work on finding a process for the synthesis of sulfoxides and sulfones that is easy, cheap and more sustainable. Furthermore, it is of interest to find a system that can selectively lead to either the sulfoxide or the sulfone.

The oxidation of sulfides is a widely employed synthetic route to access sulfoxides and sulfones, utilizing various oxidizing agents such as meta-chloro-perbenzoic acid (mCPBA), HIO $_4$, oxone, H $_2$ O $_2$ as oxidizing agents.

In the present work three previously described compounds, decavanadate-based materials were used as catalysts to test their activity in sulfide oxidation reactions: diethylenediammonium decavanadatetetrahydrate $(NH_4)_2(H_2en)_2\{V_{10}O_{28}\}\cdot 4H_2O$ (Cat.1), triethylenediammonium decavanadate hexahydrated $(H_2en)_3\{V_{10}O_{28}\}\cdot 6H_2O$ (Cat.2) and tetraammonium decaaqualithium decavanadate $\{Li_2(H_2O)10\}(V_{10}O_{28})(NH_4)_4$ (Cat.3). [4]

Table 1. Experimental details, conversion and selectivity data for the oxidation reactions of compound **1**

		Conversion* Selectivity*(%)		
Catalyst	Solvent	(%)	2	3
nonea	MeOH	13	100	0
Cat.1b	MeOH	0	0	0
Cat.1	MeOH	100	64	36
	EG	100	27	73
	H ₂ O	52	68	32
	EtOH	100	16	84
	<i>i</i> –PrOH	100	42	58
Cat.2	MeOH	100	22	78
	EG	81	28	72
	H_2O	100	11	89
	EtOH	100	24	76
	<i>i</i> –PrOH	100	32	68
Cat.3	MeOH	100	13	84
	EG	52	53	47
	H_2O	100	34	66
	EtOH	100	10	90
	<i>i</i> –PrOH	100	40	60

Reaction conditions: diphenyl-sulfide (0.27 mmol), solvent (3 mL), H_2O_2 , catalyst (1.5 mol%), room temperature, 2h. and catalyst was used. bno H_2O_2 was used. *without separation from reaction mixture, according to ¹H NMR measurements. Methanol (MeOH), ethylene-glycol (EG), water (H_2O), ethanol (EtOH), 2-propanol (*i*-PrOH).

<u>References</u>

[1] I. Fernández, N. Khiar, *Chem. Rev.* 103, 3651. (2003). [2] N. Deak, D. Madec, G. Nemes, *Eur. J. Inorg. Chem.*, 2769. (2020). [3] N. Deak, O. Thillaye du Boullay, S. Mallet-Ladeira, I.T. Moraru, D. Madec, G. Nemes, *Eur. J. Inorg. Chem*, 3729. (2020). [4] N. Deak, M. Idboumlik, A. Soran, M. Lachkar, B. El Bali, G.Nemes, *Studia UBB Chemia*, LXIX, 3, 7. (2024).

<u>Acknowledgement</u>

The authors thank for financial support provided by Babes-Bolyai University thorough grant AGC-UBB-FCIC and UEFISCDI through grant PN-IV-P2-2.1-TE-2023-0612.

Scheme 2. Oxidation of 1,3-(para-tolyl sulfide)-5-tertbutyl-benzene

Results and discussions

For the catalytic tests, several criteria were established: reactions were conducted at r.t. (22±2°C), aiming for the shortest possible reaction times. We also prioritized the use of an easily handled oxidant and accessible, low-toxicity solvents. The selection of solvents was initially guided by the principles of green and sustainable chemistry, emphasizing safety, health, and environmental considerations. The catalytic performance of Cat.1-3 under the selected conditions was largely comparable. (Table 1)

In the second part of our study the aim was to investigate and compare various methods for the oxidation of bis-thioether **4**, where we observed that the catalytic oxidation efficiency of Cat.1-3 was highly dependent on the reaction solvent. No substrate conversion was detected in either MeOH or EG with any of the catalysts. However, complete conversion was achieved in H₂O and *i*-PrOH using catalysts Cat.1 and Cat.3 (Table 2).

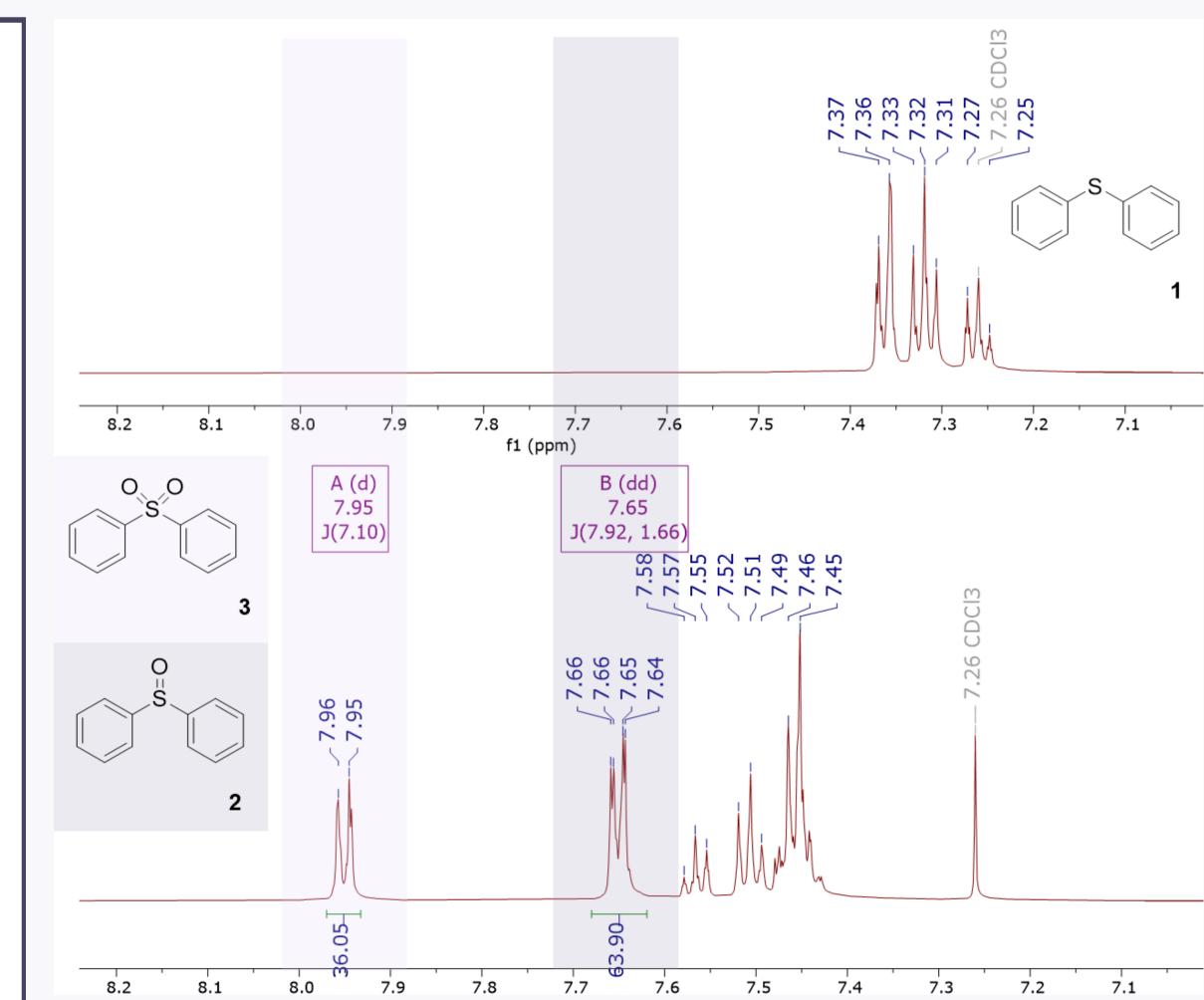


Figure 1. Example for the use of ¹H NMR spectroscopy for calculating the conversion and selectivity of the oxidation reactions.

Table 2. Experimental details, conversion and selectivity data for the oxidation reactions of compound **4**

the oxidation reactions of compound 4								
Catalyst	Solvent	Conversion* (%)	Selectivity (%)					
			5	6	7			
Cat. 1	MeOH	0	0	0	0			
	EG	0	0	0	0			
	H ₂ O	100	74.65	25.35	0			
	EtOH	0	0	0	0			
	<i>i</i> –PrOH	100	36.31	49.32	14.3			
Cat. 2	MeOH	0	0	0	0			
	EG	0	0	0	0			
	H ₂ O	100	29.97	58.39	11.82			
	EtOH	71.83	16.54	30.87	21.73			
	<i>i</i> –PrOH	40.68	32.34	40.07	25.59			
Cat. 3	MeOH	0	0	0	0			
	EG	0	0	0	0			
	H ₂ O	100	21.04	51.25	27.72			
	EtOH	97.5	30.65	29.71	39.64			
	<i>i</i> –PrOH	100	19.70	38.11	42.28			
nonea	CH ₂ Cl ₂	100	0	0	100			
none ^b	AcOH	100 mmol) bis-tioeth	4.44	36.36	59.2			

Reaction condition: 50 mg (0.27 mmol) bis-tioether, 3 mL solvent, 1 mL H_2O_2 35% solution, 5 mg catalyst (1.5 mol%) were added in a round bottom flask and stirred at room temperature for 48 hour. Water and ethyl-acetate were added, the phases separated, the organic phase washed with ethylacetate, then dried under vacuum and analysed by 1H NMR spectroscopy. ^a *m*CPBA was used as oxidant, reaction at 0 °C, 2h; ^b H_2O_2 was used as oxidant, reaction at room temperature, 48h *without separation from reaction mixture, according to ¹H NMR measurements. Methanol (MeOH), ethylene-glycol (EG), water (H_2O), ethanol (EtOH), 2-propanol (*i*-PrOH).

Conclusion

In this work we investigated the catalytic activity of three decavanadate species in sulfoxidation reactions. Full conversion of the diphenyl-sulfide substrate was observed in a short reaction time (2h), in most solvents (MeOH, EtOH, *i*-PrOH), with low catalyst loading (1.5 mol%). Moreover, Cat.3 showed good results in the recyclability test, giving full conversion of the substrate even after three runs.