

Effect of UV-visible Light Excitation Wavelength on the **Photocatalytic Activity of TiO₂-doped with Noble Metals Towards CO₂ Hydrogenation**

Mohit Yadav^{1,*}, Ádám Ágfalvi¹, András Sápi¹, Zsolt Pap^{1,2,3}, Ákos Kukovecz¹, Zoltán Kónya^{1,4}

¹Department of Applied and Environmental Chemistry, Interdisciplinary Excellence Centre, University of Szeged, H-6720, Rerrich Béla Sqr. 1, Szeged, Hungary ²Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian 42, RO-400271 Cluj-Napoca, Romania

³Institute of Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Fântânele Str. 30, RO-400294 Cluj-Napoca, Romania ⁴ELKH-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich Béla tér 1, Szeged 6720, Hungary Environmental Chemistry, University of Szeged, Rerrich sqr. 1, H-6720, Szeged, Hungary

*e-mail: <u>yadavmohit27@gmail.com</u>

Introduction

Characterization and photocatalytic activity

Transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption, diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) measurements were carried out to characterize the samples. The photocatalytic efficiency of the TiO₂, Rh/TiO₂, Ru/TiO₂, and Pt/TiO₂ composites were investigated via the photocatalytic reduction of CO_2 under UV and visible light irradiation.

- Energy consumption has been increasing with the world's population.
- Fossil fuels are the main source of energy.
- Combustion of fossil fuels generates greenhouse CO₂
- Photocatalysis can be utilized under solar radiation and ambient conditions.
- Photocatalysts can satisfy requirements such as stability, non-toxicity, availability, lowcost, etc.
- Titanium dioxide (TiO_2) owing to its excellent photochemical stability and unique band structure has shown promising activity towards photocatalytic CO₂ reduction.
- The photocatalytic activity of TiO_2 can further be enhanced by the deposition of noble metals such as rhodium (Rh), ruthenium (Ru), and platinum (Pt).

Methodology

Table 1. Catalyst loadings, specific surface areas (SSAs), band gaps and primary crystallite size values.

Sample	Rh, Ru and	SSAs (m²⋅g⁻¹)	Band gap	Primary	
	Pt (wt%)		(eV)	crystallite size	
				(nm)	
TiO ₂	-	48.8	3.28	19.31	
Pt/TiO ₂	1	52.7	3.24	19.43	
Ru/TiO ₂	1	51.8	3.22	19.39	
Rh/TiO ₂	1	53.1	3.16	19.35	

Morphology-TEM

Samples	CO ₂ conversion (%)		Formation of CO (nmol·g ⁻¹ ·sec ⁻¹)		Selectivity of CO (%)	
	UV	Visible	UV	Visible	UV	Visible
TiO ₂	4.6	2.4	146.1	77.1	99.9	99.9
Pt/TiO ₂	7.9	13.3	273.7	469.2	99.9	99.9
Ru/TiO ₂	9.3	14.8	304.6	531.8	98.9	98.8
Rh/TiO ₂	14.8	21.9	435.6	855.2	99.9	99.9

Conclusions

- Noble metals (Pt, Ru, Rh) were deposited on TiO₂ surfaces by a facile wetimpregnation method, which were tested under both UV and visible light irradiation.
- The light absorption properties were enhanced with the deposition of noble metals, and the electron-hole recombination was successfully inhibited based on the PL spectra.
- Rh/TiO₂ sample showed the highest photocatalytic activity towards CO₂ hydrogenation under both UV and visible light irradiations.
- A probable mechanism was proposed for the photocatalytic reduction of CO₂ on the as-optimized Rh/TiO₂ sample.

