
www.postersession.com

www.postersession.com

Methodology

Conclusions
• Noble metals (Pt, Ru, Rh) were deposited on TiO2 surfaces by a facile wet-

impregnation method, which were tested under both UV and visible light irradiation.
• The light absorption properties were enhanced with the deposition of noble metals, 

and the electron–hole recombination was successfully inhibited based on the PL 
spectra.

• Rh/TiO2 sample showed the highest photocatalytic activity towards CO2

hydrogenation under both UV and visible light irradiations.
• A probable mechanism was proposed for the photocatalytic reduction of CO2 on the 

as-optimized Rh/TiO2 sample. 
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• Energy consumption has been increasing with the world’s population. 

• Fossil fuels are the main source of energy.

• Combustion of fossil fuels generates greenhouse CO2.

• Photocatalysis can be utilized under solar radiation and ambient conditions.

• Photocatalysts can satisfy requirements such as stability, non-toxicity, availability, low-

cost, etc. 

• Titanium dioxide (TiO2) owing to its excellent photochemical stability and unique band 

structure has shown promising activity towards photocatalytic CO2 reduction.

• The photocatalytic activity of TiO2 can further be enhanced by the deposition of noble 

metals such as rhodium (Rh), ruthenium (Ru), and platinum (Pt).

Specifications and reaction conditions of the photocatalytic reactor system

• HP 5890 Series II Gas Chromatograph 

• Light source: 500 W mercury vapor lamp (TQ 718, Heraeus Noble light, Germany)

• Weight of sample used: 250–300 mg

• Pressure (CO2+H2): 200 mbar; Flow = 15 mL·min–1

• Column: 2 meters long, packed with Porapak QS

Morphology-TEM 

Characterization and 

photocatalytic activity
Transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen

adsorption, diffuse reflectance spectroscopy (DRS), and photoluminescence (PL)

measurements were carried out to characterize the samples. The photocatalytic

efficiency of the TiO2, Rh/TiO2, Ru/TiO2, and Pt/TiO2 composites were investigated via

the photocatalytic reduction of CO2 under UV and visible light irradiation.
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Samples CO2 conversion (%) Formation of CO 

(nmol·g–1·sec–1) 

Selectivity of CO 

(%) 

UV Visible UV Visible UV Visible 

TiO2 4.6 2.4 146.1 77.1 99.9 99.9 

Pt/TiO2 7.9 13.3 273.7 469.2 99.9 99.9 

Ru/TiO2 9.3 14.8 304.6 531.8 98.9 98.8 

Rh/TiO2 14.8 21.9 435.6 855.2 99.9 99.9 

 

Sample Rh, Ru and 

Pt (wt%)

SSAs (m2·g–1) Band gap 

(eV)

Primary 

crystallite size 

(nm)

TiO2 - 48.8 3.28 19.31

Pt/TiO2 1 52.7 3.24 19.43

Ru/TiO2 1 51.8 3.22 19.39

Rh/TiO2 1 53.1 3.16 19.35

Table 1. Catalyst loadings, specific surface areas (SSAs), band gaps and primary crystallite size 

values. 
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