Szulfidásványok szerepe a felszín alatti hidrogéntárolásban

The role of sulfides in underground hydrogen storage

Authors

  • GELENCSÉR Orsolya
  • SZABÓ Csaba
  • BREITNER Dániel
  • FALUS György
  • SZABÓ-KRAUSZ Zsuzsanna

Keywords:

hidrogéntárolás, homokkő, pirit, modellezés, rezervoár

Abstract

Hydrogen is attracting a growing attention as a protagonist of future energy storage. However, geochemical challenges associated with hydrogen storage in sedimentary formations are still not well defined. Pyrite is a redox sensitive mineral, which is an accessory constituent of the reservoir sandstones. The main aim of our study is to estimate the extent of geochemical reactions among pyrite, porewater and hydrogen. For this purpose, we apply geochemical modeling coupled with experiments with an adequate analytical framework (scanning electron microscopy, ICP-OES).

References

Balázs B., András U., István V., Attila B. and Csanád S. (2011) Medenceközponti földgáz-előfordulás elemzése a Makói-árokban. Földtani Közlöny 141, 23–40.

Bauer S. (2017) Underground Sun Storage. Final Report., Vienna.

Broers G. H. J. and Ketelaar J. A. A. (1960) High Temperature Fuel Cells. Ind. Eng. Chem. 52, 303–306.

Carden P. O. and Paterson L. (1979) Physical, chemical and energy aspects of underground hydrogen storage. Int. J. Hydrogen Energy 4, 559–569.

Foh S., Novil M., Rockar E. and Randolph P. (1979) Underground hydrogen storage. Final report. [Salt caverns, excavated caverns, aquifers and depleted fields]. Inst. Gas Technol. DOE, Brookhaven Natl. Lab, Upton, NY, 283. Available at: https://www.osti.gov/biblio/6536941-underground-hydrogen-storage-final-report-salt-caverns-excavated-caverns-aquifers-depleted-fields%0Ahttp://www.osti.gov/servlets/purl/6536941-eQcCso/.

Henkel S., Pudlo D., Werner L., Enzmann F., Reitenbach V., Albrecht D., Würdemann H., Heister K., Ganzer L. and Gaupp R. (2014) Mineral reactions in the geological underground induced by H2 and CO2 injections. Energy Procedia 63, 8026–8035. Available at: http://dx.doi.org/10.1016/j.egypro.2014.11.839.

Iordache I., Schitea D., Gheorghe A. V. and Iordache M. (2014) Hydrogen underground storage in Romania, potential directions of development, stakeholders and general aspects. Int. J. Hydrogen Energy 39, 11071–11081. Available at: http://dx.doi.org/10.1016/j.ijhydene.2014.05.067.

Juhász G. (1994) Magyarországi neogén medencerészek pannóniai s.l. üledéksorának összehasonlító elemzése Comparison of the sedimentary sequences in Late Neogene subbasins in the Pannonian Basin, Hungary. Földtani Közlöny 124, 341–365. Available at: https://epa.oszk.hu/01600/01635/00277/pdf/EPA01635_foldtani_kozlony_1994_124_3_341-365.pdf.

Király C., Szabó Z., Szamosfalvi Á., Kónya P., Szabó C. and Falus G. (2017) How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence? Energy Procedia 125, 527–534. Available at: http://dx.doi.org/10.1016/j.egypro.2017.08.180.

Parkhurst D. L. and Appelo C. A. J. (2013) Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations., Reston, VA. Available at: http://pubs.er.usgs.gov/publication/tm6A43.

Szabó Z., Gál N. E., Kun É., Szőcs T. and Falus G. (2018) Accessing effects and signals of leakage from a CO2 reservoir to a shallow freshwater aquifer by reactive transport modelling. Environ. Earth Sci. 77.

Tarkowski R. (2017) Perspectives of using the geological subsurface for hydrogen storage in Poland. Int. J. Hydrogen Energy 42, 347–355. Available at: http://dx.doi.org/10.1016/j.ijhydene.2016.10.136.

Truche L., Jodin-Caumon M. C., Lerouge C., Berger G., Mosser-Ruck R., Giffaut E. and Michau N. (2013) Sulphide mineral reactions in clay-rich rock induced by high hydrogen pressure. Application to disturbed or natural settings up to 250°C and 30bar. Chem. Geol. 351, 217–228. Available at: http://dx.doi.org/10.1016/j.chemgeo.2013.05.025.

Downloads

Published

2022-05-10