A köpeny-eredetű, a kozmikus anyagmintákra és a cirkumsztelláris környezetekre jellemző Mg/Si arányok komparatív vizsgálata
Comparative study of Mg/Si ratios for mantle-derived rocks, cosmic samples and circumstellar enviroments
Keywords:
Mg/Si ratio, terrestrial planets, upper mantle, mantle-derived rocks, xenolith, /, Mg/Si arány, Föld-típusú bolygók, felső-köpeny, köpeny eredetű kőzetek, xenolitAbstract
Xenoliths and other mantle-derived rocks show that the upper mantle is dominated by peridotite and Al-bearing phases that varies in compositional characteristics with increasing depth. The solar Mg/Si ratio is closely resemble to the chondritic values. The magnesium-to-silicon elemental ratio of the mantle-derived rocks is not only higher than solar, but they are thought to have a similar bulk Mg/Si ratios to that of the Solar System inner rocky planets depending on their formation location in the Solar nebula and their post-accretion processes.
References
ALLÉGRE, C.J., POIRIER, J.P., HUMLER, E., HOFMAN, A.W. 1995: The chemical composition of the Earth. Earth and Planetary Science Letters, 134, 515–526.
ANDERSON, D.L. 1983. Chemical Composition of the mantle. Journal of Geophysical Research, 88. B41-B52.
ASPLUND, M., GREVESSE N., SAUVAL J. 2005: The solar chemical composition. Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, 336, 25.
DAUPHAS, N., POITRASSON, F., BURHARDT, C., KOBAYASHI, H., KUROSAWA, K. 2015: Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry. Earth and Planetary Science Letters, 427, 236–248.
EMBEY-ISZTIN A. 2017. A köpeny eredetű kőzetek felismerésének története és szerepe a geológiai gondolkodás fejlődésében. Földtani Közlöny, 174/4, 415–422.
FROST, D. J. 2008: The upper mantle and transition zone. Elements, 4, 171–176.
HART, S.R., ZINDLER A. 1986: In search of a bulk Earth composition. Chemical Geology, 57, 247–267.
JAGOUTZ, E., PALME, H., BADDENHAUSEN, H., BLUM, K., CENDALES, M., DREIBUS, G., SPETTEL, B., LORENZ, W., WÄNKE, H. 1979: The abundances of major, minor and trace elements in the Earth's mantle as derived from primitive utramafic nodules. In: Proceedings of the Lunar and Planetary Science Conference. Houston, Texas, USA. 10. kötet.
KUCHNER, M. J., SEAGER S. 2005: Extrasolar carbon planets. arXiv:astro-ph/0504214.
LODDERS, K., FEGLEY, Jr., B. 1997: An oxygen isotope model for the composition of Mars. Icarus, 126, 373–394. [11] LYUBETSKAYA, T, KORENAGA, J. 2007: Chemical composition of Earth's primitive mantle and its variance: 1. Method and results. Journal of Geophysical Research, 112, B03211.
MCDONOUGH, W. F., SUN S. S. 1995: The composition of the Earth. Chemical Geology, 120, 223–253.
PALME H., O'NEILL, H.St.C 2014: 3.1. Cosmochemical Estimates of Mantle Composition. 1–39. In: Treatise on Geochemistry. 2nd Edition. Szerk.: TUREKIAN, K. K., HOLLAND, H. D. Elsevier, USA.
POIRIER, J.P. 1994: Light elements in the Earth's outer core: a critical review. Physics of the Earth and Planetary Interiors, 85, 319–337.
RINGWOOD, A. E. 1962: A model for the upper mantle. Journal of Geophysical Research, 67, 857–867.
SPAARGAREN, R. WANG, H.; MOJZSIS, S.; BALLMER, M.; TACKLEY, P. 2020. Exoplanet bulk silicate composition as a function of host stellar elemental abundances, and its effects on long-term planetary evolution. EGU (European Geosciences Union) General Assembly 2020, EGU2020-20378, Virtual conference, 4-8. május 2020.
TRØNNES, R. G., BARON, M.A., EIGENMANN, K.E., GUREN, M.G., HEYN, B.H., LØKEN, A., MOHN C.E. 2019: Core formation, mantle differentiation and core-mantle interaction within Earth and the terrestrial planets. Tectonophysics, 760, 165–198.
UNTERBORN, C. T., DISMUKES, E.E., PANERO, W.R. 2016: Scaling the Earth: A sensitivity analysis of terrestrial exoplanetary interior models. The Astrophysical Journal, 819, 32.
WAGER, L. R. 1958: Beneath the Earth’s crust. Advancement of Science, 15, 31–45.
YOSHIZAKI, T., McDONOUGH, W. F. 2020: The composition of Mars. Geochimica et Cosmochimica Acta, 273, 137–162.