Valós idejű helyszíni vízminőség-ellenőrző rendszer kiépítésének aktuális kérdései a Kárpát-medencében

Current issues of the construction of a real-time on-site water quality monitoring system in the Carpathian Basin

Authors

  • GUCSIK Arnold

Keywords:

Carpathian Basin, Danube, real-time analysis, hydrology, previous ore mines, /, Kárpát-medence, Duna, valós idejű elemzés, hidrológia, korábbi ércbányák

Abstract

Regarding the physical geographical character of the Carpathian Basin, we can say that we get a location resembling a concentric circle. Accordingly, the observation stations for the in-situ real-time measurements must also be placed forming an outer and inner ring, which are mainly connected to the catchment area of the Danube. The measuring stations could be placed at these intersections. The construction of the above system provides essential water quality data for the drinking water and industrial water supply of the local population, as well as for the environmental status assessment, especially at the former ore mines.

References

CAPODAGLIO, A. G., CALLEGARI, A. 2009: Online Monitoring Technologies For Drinking Water Systems Security,In Hlavinek, P., Popovska, C., Marsalek, J., Mahrikova, I., Kukharchyk, T. (szerk.): Risk Management of Water Supply and Sanitation Systems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht, 153–179, https://doi.org/10.1007/978-90-481-2365-0_15

ESSAMLALI, I., NHAILA, H., KHAÏLI, M. E. 2024: Advances in machine learning and IoT for water quality monitoring: A comprehensive review, Heliyon, 10(6), e27920. https://doi.org/10.1016/j.heliyon.2024.e27920

KAMARUIDZAMAN, N. S., RAHMAT, S. N. 2020: Water Monitoring System Embedded with Internet of Things (IoT) Device: A Review, IOP Conference Series Earth and Environmental Science, 498(1), 12068. IOP Publishing. https://doi.org/10.1088/1755-1315/498/1/012068

MEYBECK, M., HELMER, R. G. 1989: The quality of rivers: From pristine stage to global pollution. Palaeogeography Palaeoclimatology Palaeoecology 75/4, 283–309. https://doi.org/10.1016/0031-0182(89)90191-0

MILLER, M., KISIEL, A., CEMBROWSKA-LECH, D., DURLIK, I., MILLER, T. 2023: IoT in Water Quality Monitoring–Are We Really Here? Sensors, 23/2, 960. https://doi.org/10.3390/s23020960

PATTNAIK, B. S., PATTANAYAK, A. S., UDGATA, S. K., PANDA, А. К. 2021: Machine learning based soft sensor model for BOD estimation using intelligence at edge, Complex & Intelligent Systems, 7/2, 961–976. https://doi.org/10.1007/s40747-020-00259-9

REVATHI, P., MRUNALINI, T., NIRANJANA, M. I., CIBIN, R., PRAKASH, J., SUDHARSAN, K. 2021: Smart Water Management towards Quality and Improvement using IoT, IOP Conference Series Materials Science and Engineering, 1055/1, p. 12080. https://doi.org/10.1088/1757-899x/1055/1/012080

WAGLE, N., ACHARYA, T. D., LEE, D. H. 2020: Comprehensive Review on Application of Machine Learning Algorithms for Water Quality Parameter Estimation Using Remote Sensing Data, Sensors and Materials, 32/11, 3879–3892. https://doi.org/10.18494/sam.2020.2953

Downloads

Published

2025-04-02