Hidrogén előállításának lehetőségei

Possibilities of hydrogen production

Authors

  • BÖLKÉNY Ildikó
  • VADÁSZI Marianna

Keywords:

hidrogénelőállítás, gőzreformálás, parciális oxidáció, autotermikus reformálás, elektrolízis

Abstract

In the 16th century, Turquet De Mayerne was the first to describe the formation of hydrogen. Then not long after, in 1671, Robert Boyle reported independently of him. Finally, in 1776, Henry Cavendish discovered it as a stand-alone element. [1] Its name is derived from the Greek word hydrogen, which means aquifer. Hydrogen is the lightest element, it has a high calorific value and a high heat of combustion, it is flammable and explosive in a wide concentration range, and it is a rapidly diffusing, mixing gas. [2] Although one of the most common elements in the universe, it is not free on Earth, it occurs only in its compounds in enormous quantities. It can be produced from hydrogen compounds by various processes using energy. The article presents some possibilities of hydrogen production, without claiming to be exhaustive.

Kivonat

A XVII. században elsőként Turquet De Mayerne írta le a hidrogén keletkezését. Majd nem sokkal később, 1671-ben tőle függetlenül Robert Boyle is beszámolt róla. Végül 1776-ban Henry Cavedish felfedezte, hogy önálló elem. [1] Nevét a görög hydrogénium szóból származtatjuk, amely jelentése vízalkotó. A hidrogén a legkönnyebb elem, fűtőértéke, égéshője nagy, széles koncentrációs tartományban éghető és robbanóképes, továbbá gyorsan diffundáló, keveredő gáz. [2] Ugyan a világegyetem egyik leggyakoribb eleme, de a Földön szabadon nem, csak vegyületeiben fordul elő hatalmas mennyiségben. A hidrogén vegyületeiből előállítható, különböző eljárásokkal, energia felhasználásával. A cikk a hidrogén előállítás egyes lehetőségeit mutatja be, a teljesség igénye nélkül.

References

SCHILLER, Róbert 2013: Hidrogén, az elemek királya, Typotex, Budapest, ISBN 978 963 279 316 0

HAMPEL C.A.:(Ed) 1968: The Encyclopedia of the Chemical Elements, Reinhold Book Corporation, New York

KING, D.L., BROOKS, K.P., FISCHER, C.M., PEDERSON, L., RAWLINGS, G., STENKAMP, S.V., TEGROTENHUIS, W., WEGENG, R. AND WHYATT, G.A. 2005: Fuel Reformation: Catalyst Requirements in Microchannel Architectures. Microreactor Technology and Process Intensification, 119- 128, Washington DC

ROSTRUP-NIELSEN, J. 2003: Hydrogen Generation by Catalysis, Encyclopedia of Catalysis, Wiley Interscience,

Adolf J., Balzer C. H., Louis J., Schabla U., Fischedick M., Arnold K., Pastowski A., Schüwer D., 2017: Energy of the Future? Sustainable Mobility through Fuel Cells and H2, Shell Deutschland Oil GmbH, Hamburg, https://www.shell.de/

GARCÍA L., 2015: Compendium of Hydrogen Energy: Hydrogen production by steam reforming of natural gas and other nonrenewable feedstocks, Universidad de Zaragoza, Zaragoza, Spain

WILHELM, D.J., SIMBECK, D.R., KARP, A.D. AND DICKENSON, R.L. 2001: Syngas Production for Gas-to-Liquids Applications: Technologies, Issues and Outlook. Fuel Processing Technology, 71, 139-148.

HOLLADAY, J., JONES, E., PALO, D.R., PHELPS, M., CHIN, Y.-H., DAGLE, R., HU, J., WANG Y. AND BAKER, E. 2003: Miniature Fuel Processors for Portable Fuel Cell Power Supplies. In: Proceedings of the Materials Research Society Symposium , Materials Research Society, 429-434.Boston, MA

NAVARRO R.M., PEN M.A., FIERRO J.L.G., 2007: Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass. Chemical Reviews 3952-91. https://doi.org/10.1021/cr0501994

ANGELI, S.D., MONTELEONE, G., GIACONIA, A. AND LEMONIDOU, A.A. 2014: State-of- the-Art Catalysts for CH4 Steam Reforming at Low Temperature. International Journal of Hydrogen Energy, 39, 1979-1997. https://doi.org/10.1016/j.ijhydene.2013.12.001

CZERNIKOWSKI, A. 2001: Glidarc Assisted Preparation of the Synthesis Gas from Natural Gas and Waste Hydrocarbons Gases. Oil & Gas Science and Technology — Rev. IFP, 2, 181-198. https://doi.org/10.2516/ogst:2001018

TIMM, D.L. AND ONSAN, Z.I. 2001: On Board Fuel Conversion for Hydrogen-Fuel- Cell-Driven Vehicles. Catalysis Review, 43, 31-84. https://doi.org/10.1081/CR-100104386

MCHUGH, K. 2005: Hydrogen Production Methods. MPR Associates Inc., 41

KRUMPELT, M., KRAUSE, T.R., CARTER, J.D., KOPASZ, J.P. AND AHMED, S. 2002: Fuel Processing for Fuel Cell Systems in Transportation and Portable Power Applications. Catalysis Today, 77, 3-16. https://doi.org/10.1016/S0920-5861(02)00230-4

MUHAMMAD H. R. 2011: Experimental Studies and Modeling of Synthesis Gas Production and Fischer- Tropsch Synthesis. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim

BELLOWS, R.J. 1999: Technical Challenges for Hydrocarbon Fuel Reforming. DOE, Baltimore, MD.

JAKUS A. 2015: Hoffman-féle vízbontó készülék, https://hetikiserlet.blog.hu/

EL_SHAFIE M. I., KAMBARA S., HAYAKAWA Y., 2019: Hydrogen Production Technologies Overview, Journal of Power and Energy Engineering 7 107-154.

Downloads

Published

2020-06-18