Nanoanyagok szerepe a betonban
The role of nanomaterials in concrete
Keywords:
cement, concrete, nanomaterials, graphene oxide, cellulose nanocrystals, /, cement, beton, nanoanyagok, grafén-oxid, GO, cellulóz nanokristály, CNC, beton, nanoanyagok, grafén-oxid, GO, cellulóz nanokristály, CNCAbstract
Nanomaterials, such as graphene oxide and cellulose nanocrystals, are innovative nanomaterials that improve the properties of concrete: thanks to their extremely small size and large surface area, they can improve the strength and crack resistance of concrete. They promote better hydration within the cement matrix by increasing the density and reducing the porosity. Overall, nanomaterials allow the development of high-performance, longer-lasting concretes with tailored properties. Overall, nanomaterials enable the development of high-performance, longer-lasting concretes with tailored properties.
Kivonat
A nanoanyagok, mint például a grafén-oxid és a cellulóz nanokristályok, olyan innovatív nanoanyagok, amelyek javítják a beton tulajdonságait: rendkívül kis méretüknek és nagy felületüknek köszönhetően javítják a beton szilárdságát és repedésállóságát. Elősegítik a cementmátrixon belüli a jobb hidratációt, növelve annak sűrűséget és csökkentve a porozitását. Összességében a nanoanyagok lehetővé teszik a nagy teljesítőképességű, hosszabb élettartamú, testre szabott tulajdonságokkal rendelkező betonok kifejlesztését.
References
K. Sobolev, Modern developments related to nanotechnology and nanoengineering of concrete, Frontiers of Structural and Civil Engineering 2016 10:2 10 (2016) 131–141. https://doi.org/10.1007/S11709-016-0343-0.
Z. Wu, C. Shi, K.H. Khayat, S. Wan, Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC), Cem Concr Compos 70 (2016) 24–34. https://doi.org/10.1016/J.CEMCONCOMP.2016.03.003.
R. Gopalakrishnan, R. Jeyalakshmi, Strength deterioration of nano-silica contained in ordinary Portland cement concretes in aggressive sulfate environments, The European Physical Journal Plus 2018 133:9 133 (2018) 1–19. https://doi.org/10.1140/EPJP/I2018-12162-3.
F. Sanchez, K. Sobolev, Nanotechnology in concrete – A review, Constr Build Mater 24 (2010) 2060–2071. https://doi.org/10.1016/J.CONBUILDMAT.2010.03.014.
Li Z, Young R, Wang R, Yang F, Hao L, Jiao W, Polymer W L- and 2013 undefined The role of functional groups on graphene oxide in epoxy nanocomposites Elsevier
Luo J, Chen S, Li Q, Liu C, Gao S, Zhang J and Guo J 2019 Influence of Graphene Oxide on the Mechanical Properties, Fracture Toughness, and Microhardness of Recycled Concrete Nanomater. 2019, Vol. 9, Page 325 9 325
Yao S, Zou F, Hu C, Wang F and Hu S 2020 New insight into design of highly ordered calcium silicate hydrate with graphene oxide J. Am. Ceram. Soc. 103 681–91
Shang J, Chen Y, Zhou Y, Liu L, Wang G, Li X, Kuang J, Liu Q, Dai Z, Miao H and others 2015 Effect of folded and crumpled morphologies of graphene oxide platelets on the mechanical performances of polymer nanocomposites Polymer (Guildf). 68 131–9
de Silva R A, de Castro Guetti P, da Luz M S, Rouxinol F and Gelamo R V 2017 Enhanced properties of cement mortars with multilayer graphene nanoparticles Constr. Build. Mater. 149 378–85
Hou D, Yang T, Tang J and Li S 2018 Reactive force-field molecular dynamics study on graphene oxide reinforced cement composite: functional group de-protonation, interfacial bonding and strengthening mechanism Phys. Chem. Chem. Phys. 20 8773–89
Li W, Li X, Chen S J, Liu Y M, Duan W H and Shah S P 2017 Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste Constr. Build. Mater. 136 506–14
Lv S, Hu H, Zhang J, Lei Y, Sun L and Hou Y 2019 Structure, performances, and formation mechanism of cement composites with large-scale regular microstructure by distributing uniformly few-layered graphene oxide in cement matrix Struct. Concr. 20 471–82
Zhao L, Guo X, Liu Y, Zhao Y, Chen Z, Zhang Y, Guo L, Shu X and Liu J 2018 Hydration kinetics, pore structure, 3D network calcium silicate hydrate, and mechanical behavior of graphene oxide reinforced cement composites Constr. Build. Mater. 190 150–63
Roy R, Mitra A, Ganesh A T and Sairam V 2018 Effect of graphene oxide nanosheets dispersion in cement mortar composites incorporating metakaolin and silica fume Constr. Build. Mater. 186 514–24
Long W-J, Gu Y, Xing F and Khayat K H 2018 Microstructure development and mechanism of hardened cement paste incorporating graphene oxide during carbonation Cem. Concr. Compos. 94 72–84
Mohammed A, Sanjayan J G, Nazari A and Al-Saadi N T K 2018 The role of graphene oxide in limited long-term carbonation of cement-based matrix Constr. Build. Mater. 168 858–66
Xu G, Du S, He J and Shi X 2019 The role of admixed graphene oxide in a cement hydration system Carbon N. Y. 148 141–50
Lin C, Wei W and Hu Y H 2016 Catalytic behavior of graphene oxide for cement hydration process J. Phys. Chem. Solids 89 128–33
Lv S, Liu J, Sun T, Ma Y and Zhou Q 2014 Effect of GO nanosheets on shapes of cement hydration crystals and their formation process Constr. Build. Mater. 64 231–9
Lv S H, Deng L J, Yang W Q, Zhou Q F and Cui Y Y 2016 Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites Cem. Concr. Compos. 66 1–9
Lv S H, Ma Y J, Qiu C C and Ju H B 2013 Study on reinforcing and toughening of graphene oxide to cement-based composites J. Funct. Mater. 44 2227–31
Yaya C U I, Ting S U N and others 2015 The effect of graphene oxide on the fluidity of cement paste and the structure and properties of cement paste Funct. Mater. 46 4051–6
Lv S, Zhang J, Zhu L and Jia C 2016 Preparation of cement composites with ordered microstructures via doping with graphene oxide nanosheets and an investigation of their strength and durability Materials (Basel). 9 924
Horszczaruk E, Mijowska E, Kalenczuk R J, Aleksandrzak M and Mijowska S 2015 Nanocomposite of cement/graphene oxide--Impact on hydration kinetics and Young’s modulus Constr. Build. Mater. 78 234–42
Lv S, Zhang J, Zhu L, Jia C and Luo X 2017 Preparation of Regular Cement Hydration Crystals and Ordered Microstructures by Doping GON and an Investigation into Its Compressive and Flexural Strengths Crystals 7 165
Long W-J, Wei J-J, Ma H and Xing F 2017 Dynamic mechanical properties and microstructure of graphene oxide nanosheets reinforced cement composites Nanomaterials 7 407
Zhou C, Li F, Hu J, Ren M, Wei J and Yu Q 2017 Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes Constr. Build. Mater. 134 336–45
Mohammed A, Sanjayan J G, Duan W H and Nazari A 2016 Graphene oxide impact on hardened cement expressed in enhanced freeze--thaw resistance J. Mater. Civ. Eng. 28 4016072
Gong K, Pan Z, Korayem A H, Qiu L, Li D, Collins F, Wang C M and Duan W H 2015 Reinforcing effects of graphene oxide on portland cement paste J. Mater. Civ. Eng. 27 A4014010
Mokhtar M M, Abo-El-Enein S A, Hassaan M Y, Morsy M S and Khalil M H 2017 Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement Constr. Build. Mater. 138 333–9
Mohammed A, Al-Saadi N T K and Al-Mahaidi R 2017 Utilization of graphene oxide to synthesize high-strength cement-based adhesive J. Mater. Civ. Eng. 29 4016258
Long W-J, Zheng D, Duan H, Han N and Xing F 2018 Performance enhancement and environmental impact of cement composites containing graphene oxide with recycled fine aggregates J. Clean. Prod. 194 193–202
Long W-J, Wei J-J, Xing F and Khayat K H 2018 Enhanced dynamic mechanical properties of cement paste modified with graphene oxide nanosheets and its reinforcing mechanism Cem. Concr. Compos. 93 127–39
Wang Q, Wang J, Lu C, Liu B, Zhang K and Li C 2015 Influence of graphene oxide additions on the microstructure and mechanical strength of cement New Carbon Mater. 30 349–56
Sharma S and Kothiyal N C 2015 Influence of graphene oxide as dispersed phase in cement mortar matrix in defining the crystal patterns of cement hydrates and its effect on mechanical, microstructural and crystallization properties Rsc Adv. 5 52642–57.
Long W-J, Wei J-J, Ma H and Xing F 2017 Dynamic mechanical properties and microstructure of graphene oxide nanosheets reinforced cement composites Nanomaterials 7 407
Lv S, Ting S, Liu J and Zhou Q 2014 Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness CrystEngComm 16 8508–16
Long W-J, Ye T--H, Gu Y-C, Li H-D and Xing F 2019 Inhibited effect of graphene oxide on calcium leaching of cement pastes Constr. Build. Mater. 202 177–88
Kang X, Zhu X, Qian J, Liu J and Huang Y 2019 Effect of graphene oxide (GO) on hydration of tricalcium silicate (C3S) Constr. Build. Mater. 203 514–24
Lu Z, Li X, Hanif A, Chen B, Parthasarathy P, Yu J and Li Z 2017 Early-age interaction mechanism between the graphene oxide and cement hydrates Constr. Build. Mater. 152 232–9
Li X, Lu Z, Chuah S, Li W, Liu Y, Duan W H and Li Z 2017 Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste Compos. Part A Appl. Sci. Manuf. 100 1–8
Pan Z, He L, Qiu L, Korayem A H, Li G, Zhu J W, Collins F, Li D, Duan W H and Wang M C 2015 Mechanical properties and microstructure of a graphene oxide--cement composite Cem. Concr. Compos. 58 140–7.
Zhu X H, Kang X J, Yang K and Yang C H 2017 Effect of graphene oxide on the mechanical properties and the formation of layered double hydroxides (LDHs) in alkali-activated slag cement Constr. Build. Mater. 132 290–5
Basheer L, Kropp J and Cleland D J 2001 Assessment of the durability of concrete from its permeation properties: a review Constr. Build. Mater. 15 93–103
Yang C-C, Wang L C and Weng T L 2004 Using charge passed and total chloride content to assess the effect of penetrating silane sealer on the transport properties of concrete Mater. Chem. Phys. 85 238–44
Peyvandi A, Soroushian P, Balachandra A M and Sobolev K 2013 Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets Constr. Build. Mater. 47 111–7
Qureshi T S and Panesar D K 2019 Impact of graphene oxide and highly reduced graphene oxide on cement-based composites Constr. Build. Mater. 206 71–83
Mohammed A, Sanjayan J G, Duan W H and Nazari A 2015 Incorporating graphene oxide in cement composites: A study of transport properties Constr. Build. Mater. 84 341–7
Du H, Du S and Liu X 2014 Durability performances of concrete with nano-silica Constr. Build. Mater. 73 705–12
Du H and Dai Pang S 2015 Enhancement of barrier properties of cement mortar with graphene nanoplatelet Cem. Concr. Res. 76 10–9
Mohammed A, Sanjayan J G, Nazari A, Bagheri A and Al-Saadi N T K 2017 Inhibition of carbonation attack in cement-based matrix due to adding graphene oxide Aust. J. Civ. Eng. 15 20–31
R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem Soc Rev 40 (2011) 3941–3994.
A. Balea, E. Fuente, A. Blanco, C. Negro, Nanocelluloses: Natural-Based Materials for Fiber-Reinforced Cement Composites. A Critical Review, Polymers 2019, Vol. 11, Page 518 11 (2019) 518. https://doi.org/10.3390/POLYM11030518.
M. Ardanuy, J. Claramunt, R.D. Toledo Filho, Cellulosic fiber reinforced cement-based composites: A review of recent research, Constr Build Mater 79 (2015) 115–128. https://doi.org/10.1016/J.CONBUILDMAT.2015.01.035.
Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: Chemistry, self-assembly, and applications, Chem Rev 110 (2010) 3479–3500. https://doi.org/10.1021/CR900339W/ASSET/CR900339W.FP.PNG_V03.
V. Mymrin, P. Presotto, K. Alekseev, M.A. Avanci, P.H.B. Rolim, V. Petukhov, A. Taskin, E. Gidarakos, A. Valouma, G. Yu, Application of hazardous serpentine rocks’ extraction wastes in composites with glass waste and clay-sand mix to produce environmentally clean construction materials, Constr Build Mater 234 (2020) 117319. https://doi.org/10.1016/J.CONBUILDMAT.2019.117319.
A.M. Said, O.I. Quiroz, D.W. Hatchett, M. Elgawady, Latex-modified concrete overlays using waste paint, Constr Build Mater 123 (2016) 191–197. https://doi.org/10.1016/J.CONBUILDMAT.2016.06.123.
S. Nassiri, Z. Chen, G. Jian, T. Zhong, M.M. Haider, H. Li, C. Fernandez, M. Sinclair, T. Varga, L.S. Fifield, M. Wolcott, Comparison of unique effects of two contrasting types of cellulose nanomaterials on setting time, rheology, and compressive strength of cement paste, Cem Concr Compos 123 (2021) 104201. https://doi.org/10.1016/j.cemconcomp.2021.104201.
T. Aziz, H. Fan, X. Zhang, F. Haq, A. Ullah, R. Ullah, F.U. Khan, M. Iqbal, Advance Study of Cellulose Nanocrystals Properties and Applications, Journal of Polymers and the Environment 2020 28:4 28 (2020) 1117–1128. https://doi.org/10.1007/S10924-020-01674-2.
W.Y. Hamad, Cellulose Nanocrystals: Properties, Production and Applications by Wadood Y. Hamad, MRS Bull 43 (2018) 461–461. https://doi.org/10.1557/MRS.2018.139/METRICS.
J. George, S.N. Sabapathi, Cellulose nanocrystals: synthesis, functional properties, and applications Nanotechnology, Science and Applications Dovepress Cellulose nanocrystals: synthesis, functional properties, and applications, Nanotechnol Sci Appl 8 (2015) 45–54. https://doi.org/10.2147/NSA.S64386
T. Aziz, A. Ullah, H. Fan, R. Ullah, F. Haq, F.U. Khan, M. Iqbal, J. Wei, Cellulose Nanocrystals Applications in Health, Medicine and Catalysis, J Polym Environ 29 (2021) 2062–2071. https://doi.org/10.1007/S10924-021-02045-1/FIGURES/3.
D. Trache, M.H. Hussin, M.K.M. Haafiz, V.K. Thakur, Recent progress in cellulose nanocrystals: sources and production, Nanoscale 9 (2017) 1763–1786. https://doi.org/10.1039/C6NR09494E.
V. Thakur, A. Guleria, S. Kumar, S. Sharma, K. Singh, Recent advances in nanocellulose processing, functionalization and applications: a review, Mater Adv 2 (2021) 1872–1895. https://doi.org/10.1039/D1MA00049G.
J.K. Muiruri, S. Liu, W.S. Teo, J. Kong, C. He, Highly Biodegradable and Tough Polylactic Acid-Cellulose Nanocrystal Composite, ACS Sustain Chem Eng 5 (2017) 3929–3937.
M. Kaur, M. Arshad, A. Ullah, In-Situ Nanoreinforced Green Bionanomaterials from Natural Keratin and Montmorillonite (MMT)/Cellulose Nanocrystals (CNC), ACS Sustain Chem Eng 6 (2018) 1977–1987.
A. Babaei-Ghazvini, B. Vafakish, R. Patel, K.J. Falua, M.J. Dunlop, B. Acharya, Cellulose nanocrystals in the development of biodegradable materials: A review on CNC resources, modification, and their hybridization, Int J Biol Macromol 258 (2024) 128834.
J. Shojaeiarani, D.S. Bajwa, S. Chanda, Cellulose nanocrystal based composites: A review, Composites Part C: Open Access 5 (2021) 100164.
C. Calvino, N. Macke, R. Kato, S.J. Rowan, Development, processing and applications of bio-sourced cellulose nanocrystal composites, Prog Polym Sci 103 (2020) 101221.
F. Montes, T. Fu, J.P. Youngblood, J. Weiss, Rheological impact of using cellulose nanocrystals (CNC) in cement pastes, Constr Build Mater 235 (2020) 117497.
S. Raghunath, M. Hoque, E.J. Foster, On the Roles of Cellulose Nanocrystals in Fiber Cement: Implications for Rheology, Hydration Kinetics, and Mechanical Properties, 11 (2023) 10727–10736.
M.R. Kamal, V. Khoshkava, Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites, Carbohydr Polym 123 (2015) 105–114.
Ali Satar Jaber AL-ASKARY, Didem OKTAY, Influence of Cellulose Nanocrystals and Nanosilica on Microstructural and Mechanical Performance of Cement-Based Materials, Master’s Degree Thesis, Yildiz Technical University, 2022.
S. Shafeiei-Sabet, W.Y. Hamad, S.G. Hatzikiriakos, Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions, Rheol Acta 52 (2013) 741–751.
Y. Cao, P. Zavaterri, J. Youngblood, R. Moon, J. Weiss, The influence of cellulose nanocrystal additions on the performance of cement paste, Cem Concr Compos 56 (2015) 73–83.
A.S.J. Al-Askary, D. Oktay, Influence of Cellulose Nanocrystals and Nano Silica on Mechanical Performance of Cement-Based Materials, in: H.Y. ÇOĞUN, Z. KARACAGİL (Eds.), 2nd International Congress of Engineering and Natural Sciences Studies, Bidge, Ankara/Turkey, 2022: pp. 11–25.
R. Roopchund, J. Andrew, B. Sithole, Using cellulose nanocrystals to improve the mechanical properties of fly ash-based geopolymer construction materials, Engineering Science and Technology, an International Journal 25 (2022).
H.J. Lee, S.K. Kim, H.S. Lee, W. Kim, A Study on the Drying Shrinkage and Mechanical Properties of Fiber Reinforced Cement Composites Using Cellulose Nanocrystals, Int J Concr Struct Mater 13 (2019).
T. Fu, F. Montes, P. Suraneni, J. Youngblood, J. Weiss, The influence of cellulose nanocrystals on the hydration and flexural strength of Portland cement pastes, Polymers (Basel) 9 (2017).
M.R. Dousti, Y. Boluk, V. Bindiganavile, The effect of cellulose nanocrystal (CNC) particles on the porosity and strength development in oil well cement paste, Constr Build Mater 205 (2019) 456–462.
D. Barnat-Hunek, M. Grzegorczyk-Frańczak, M. Szymańska-Chargot, G. Łagód, Effect of eco-friendly cellulose nanocrystals on physical properties of cement mortars, Polymers (Basel) 11 (2019).
Y. Cao, P. Zavaterri, J. Youngblood, R. Moon, J. Weiss, The influence of cellulose nanocrystal additions on the performance of cement paste, Cem Concr Compos 56 (2015) 73–83.
A. Kumar, Y.S. Negi, V. Choudhary, N.K. Bhardwaj, Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste, Journal of Materials Physics and Chemistry 2 (2014) 1–8.
L. Wu, G. Huang, C. Hu, W.V. Liu, L. Wu, G. Huang, C. Hu, W.V. Liu, Effects of cellulose nanocrystals on the acid resistance of cementitious composites, International Journal of Minerals, Metallurgy and Materials 28 (2021) 1745–1758.
L. ping Wu, G. ping Huang, C. shi Hu, W.V. Liu, Effects of cellulose nanocrystals on the acid resistance of cementitious composites, International Journal of Minerals, Metallurgy and Materials 28 (2021) 1745–1758.
L. ping Wu, G. ping Huang, C. shi Hu, W.V. Liu, Effects of cellulose nanocrystals on the acid resistance of cementitious composites, International Journal of Minerals, Metallurgy and Materials 2021 28:11 28 (2021) 1745–1758.
D. Bondeson, A. Mathew, K. Oksman, Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis, Cellulose 2006 13:2 13 (2006) 171–180.
Z. Zhang, G.W. Scherer, Measuring chemical shrinkage of ordinary Portland cement pastes with high water-to-cement ratios by adding cellulose nanofibrils, Cem Concr Compos 111 (2020) 103625.
D. Mazlan, M.F. Md Din, C. Tokoro, I.S. Ibrahim, CELLULOSE NANOCRYSTALS ADDITION EFFECTS ON CEMENT MORTAR MATRIX PROPERTIES, Cellulose Nanocrystals Addition Effects on Cement Mortar Matrix Properties 44 (2016) 2394–2827.
D. Mazlan, S. Krishnan, M.F.M. Din, C. Tokoro, N.H.A. Khalid, I.S. Ibrahim, H. Takahashi, D. Komori, Effect of Cellulose Nanocrystals Extracted from Oil Palm Empty Fruit Bunch as Green Admixture for Mortar, Scientific Reports 2020 10:1 10 (2020) 1–11.
D. Barnat-Hunek, M. Szymańska-Chargot, M. Jarosz-Hadam, G. Łagód, Effect of cellulose nanofibrils and nanocrystals on physical properties of concrete, Constr Build Mater 223 (2019) 1–11.
H.J. Lee, W. Kim, Long-term durability evaluation of fiber-reinforced ECC using wood-based cellulose nanocrystals, Constr Build Mater 238 (2020) 117754.