Az alumínium mikroszkópikus viszkozitásának egy lehetséges új elméleti modellje

A possible theoretical modell of the microscopical viscosity of the aluminium

  • Zoltán FARKAS
  • Antal ÜRMÖS
Keywords: GaAs, nanolyuk, újfajta félvezetők, invertált kvantumpont, csepp-epitaxia

Abstract

With the help of the different nanostructures novel semiconductor devices can be produced or the parameters of the currently applied traditional devices can be improved in a significant manner also. The inverted quantum dots are belongs to this group. During the production of these nanostructures, fnanoholes are formed and filled. In our previous investigations, the formation of these nanostructures was modelled by an empirical modell, with the consideration of the microscopical viscosity of the melted metals. In this article a detailed discussion of thi modell is given, in case of the aluminium.

Kivonat

Különböző nanoszerkezetek segítségével újfajta félvezető eszközöket készíthetünk, vagy a jelenleg alkalmazott eszközök paramétereit is jelentős mértékben javítani tudjuk. Ide tartozik az úgynevezett invertált kvantum pontok csoportja is. Ennek az előállítási módja az, hogy először egy nanolyukat készítünk, majd ezt a lyukat betemetjük. Korábbi kutatásunkban e nanoszerkezetek kialakulását az olvadt fémek mikroszkópikus viszkozitásának a figyelembevételével, tapasztalati modell segítségével modelleztük. Ebben a cikkünkben részletesebben bemutatjuk ezt az új modellt, alumínium esetén.

References

G.L. Snider, A.O. Orlov, I. Amlani, X. Zuo, G.H. Bernstein, C.S. Lent, J.L. Merz and W. Porod, "Quantum Cellular Automata," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 17, pp. 1394-1398, 1999.

A. Luque, A. Martí, C. Stanley, "Understanding intermediate-band solar cells," Nature Photonics, vol. 6, pp. 146–152, February 2012.

Nemcsics Akos, Urmos Antal, Toth Lajos, "Droplet Epitaxy and its Possibilities in Nano-electronics," in IEEE, vol. International Symposium on Next-Generation Electronics (ISNE 2018), Taipei, Taiwan, 2018, pp. 122-124.

Ákos Nemcsics, "Droplet Epitaxy as a Tool for the QD-Based Circuit Realization," in Nonmagnetic and Magnetic Quantum Dots, Vasilios N. Stavrou, Ed. London, United Kingdom: IntechOpen, 2017, ch. 3, pp. 43-59.

Ákos Nemcsics, "Quantum Dots Prepared by Droplet Epitaxial Method," in Quantum Dots - Theory and Applications, Vasilios N. Stavrou, Ed. London, United Kingdom: IntechOpen, 2015, ch. 5, pp. 120-149.

M. A. Herman, H. Sitter, Molecular Beam Epitaxy, Fundamentals and Current Status 2nd. ed. Berlin: Springer, 1996.

P. Frigeri, L. Seravalli, G. Trevisi G, S. Franchi, "Molecular Beam Epitaxy: An Overview," in Comprehensive Semiconductor Science and Technology, 3, F. Roberto, K. Hiroshi B. Pallab, Ed. Amsterdam, Netherland, 2011, pp. 480–522.

H. Mohamed, Ed., Molecular Beam Epitaxy: From Research to Mass Production.: Elsevier Science, 2012.

Á. Nemcsics, B. Pődör, L. Tóth, J. Balázs, L. Dobos, J. Makai, M. Csutorás, A. Ürmös, "Investigation of MBE grown inverted GaAs quantum dots," Microelectronics Reliability, vol. 59, pp. 60-63, 2016.

N. Koguchi, S. Takahashi, T. Chikyow, "New MBE growth method for InSb quantum well boxes," Journal of Crystal Growth, pp. 688-692, 1991.

C. Heyn, D. Sonnenberg, and W. Hansen, "Local Droplet Etching: Self-assembled Nanoholes for Quantum Dots and Nanopillars," in Nanodroplets. New York: Springer Science, 2013, pp. 363-383.

Á. Nemcsics, "Growth of GaAs and related materials based nano-structures by droplet epitaxial method," Recent Res. Devel. Mat. Sci. Engg., vol. 4, pp. 53-87, 2011.

H. E. Stanley A. L. Barabási, "Basic phenomena of MBE," in Fractal Concepts In Surface Growth. Cambridge: Cambridge University Press, 1995, ch. 12, pp. 128-230.

W. Miller, "Simulation of Epitaxial Growth by Means of Density Functional Theory, Kinetic Monte Carlo, and Phase Field Methods," in Handbook of Crystal Growth: Fundamentals (Volume I., Part A: Thermodynamics and Kinetics), 2nd ed. New York: Elsevier B.V, 2015, pp. 521-559.

W.H. Qi, M.P. Wang, "Size and shape dependent melting temperature of metallic nanoparticles," Materials Chemistry and Physics, vol. 88, no. 2-3, pp. 280-284, 2004.

Published
2020-04-16
How to Cite
[1]
FARKAS, Z. and ÜRMÖS, A. 2020. Az alumínium mikroszkópikus viszkozitásának egy lehetséges új elméleti modellje. Nemzetközi Gépészeti Konferencia – OGÉT. 28, (Apr. 2020), 49-52.
Section
A. szekció - Anyagtudomány és technológia