Univerzális mechanikus megfogó vizsgálata optikai elven működő erőmérő használatával

Universal mechanical gripper testing with optical force measuring sensors

  • Attila Tamás NAGY
  • Imre PANITI
Keywords: ipari automatizáció, robot megfogó, megfogó tesztelés, Benchmark

Abstract

Due to the automatisation of industry the usage of robots and robotic end effectors in manufacturing is increasing. Another trend is the sculpture like surfaces on goods thus needing robotic grippers to handle such goods. The article presents a further developed type of a universal gripper in order to improve its performance. It was tested against parallel grippers in performance according NIST measurements using a newly developed force measuring sensor.

Kivonat

Az ipar automatizálás következtében a robotok és megfogóiknak használata egyre elterjedtebb a gyártásban. Egy másik trend a szabad felületű árucikkek térhódítása, ami magával vonja a robotmegfogók fejlesztését is. A cikk egy továbbfejlesztett univerzális megfogót mutat be, annak teljesítményének javítása érdekében. Párhuzamos megfogókkal való összehasonlításra is sor kerül NIST mérések alapján, egy újonnan kifejlesztett erőmérővel.

References

HAO, Yufei, Zheyuan GONG, Zhexin XIE, Shaoya GUAN, Xingbang YANG, Ziyu REN, Tianmiao WANG a Li WEN. Universal soft pneumatic robotic gripper with variable effective length.: 2016 35th Chinese Control Conference Chengdu, China:

AMEND, John R., Eric BROWN, Nicholas RODENBERG, Heinrich M. JAEGER a Hod LIPSON. A Positive Pressure Universal Gripper Based on the Jamming of Granular Material. IEEE Transactions on Robotics. 2012, 28(2), 341–350.

BASSON, Christian Ivan, Glen BRIGHT a Anthony John WALKER. TESTING FLEXIBLE GRIPPERS FOR GEOMETRIC AND SURFACE GRASPING CONFORMITY IN RECONFIGURABLE ASSEMBLY SYSTEMS. South African Journal of Industrial Engineering 2018

HAWKES, Elliot W., David L. CHRISTENSEN, AMY KYUNGWON HAN, Hao JIANG a Mark R. CUTKOSKY. Grasping without squeezing: Shear adhesion gripper with fibrillar thin film. 2015 IEEE International Conference on Robotics and Automation (ICRA) Seattle, WA, USA: IEEE, 2015, s. 2305–2312.

FESTO adaptív megfogók, https://www.festo.com/cat/hu_hu/products_DHEB, https://www.festo.com/cat/hu_hu/products_DHAS

SCOTT, Peter B. The ‘Omnigripper’: a form of robot universal gripper. Robotica 1985, 3(3), 153–158.

MO, An a Wenzeng ZHANG. A universal robot gripper based on concentric arrays of rotating pins. Science China Information Sciences 2019, 62(5), 50214

FU, Hong, Haokun YANG, Weishu SONG a Wenzeng ZHANG. A novel cluster-tube self-adaptive robot hand. Robotics and Biomimetics. 2017, 4(1), 25.

MO, An, Hong FU a Wenzeng ZHANG. A Universal Gripper Base on Pivoted Pin Array with Chasing Tip. In: Zhiyong CHEN, Alexandre MENDES, Yamin YAN a Shifeng CHEN, ed. Intelligent Robotics and Applications Cham: Springer International Publishing, 2018, s. 100–111

MO, An a Wenzeng ZHANG. Pin array hand: A universal robot gripper with pins of ellipse contour. 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). Macau s. 2075–2080

ZUBRYCKI, Igor a Grzegorz GRANOSIK. Test setup for multi-finger gripper control based on robot operating system (ROS). 9th International Workshop on Robot Motion and Control . Kuslin, Poland: IEEE, 2013, s. 135–140.

BASSON, Christian Ivan, Glen BRIGHT a Anthony John WALKER. TESTING FLEXIBLE GRIPPERS FOR GEOMETRIC AND SURFACE GRASPING CONFORMITY IN RECONFIGURABLE ASSEMBLY SYSTEMS. South African Journal of Industrial Engineering 2018.

CALLI, Berk, Arjun SINGH, Aaron WALSMAN, Siddhartha SRINIVASA, Pieter ABBEEL a Aaron M. DOLLAR. The YCB object and Model set: Towards common benchmarks for manipulation research. 2015 International Conference on Advanced Robotics (ICAR). Istanbul, Turkey: IEEE, 2015, s. 510–517.

CALLI, Berk, Aaron WALSMAN, Arjun SINGH, Siddhartha SRINIVASA, Pieter ABBEEL a Aaron M. DOLLAR. Benchmarking in Manipulation Research: Using the Yale-CMU-Berkeley Object and Model Set. IEEE Robotics & Automation Magazine 2015, 22(3), 36–52

FALCO, Joe, Karl VAN WYK a Elena MESSINA. Performance Metrics and Test Methods for Robotic Hands 2018

Optoforce OMD-20-SE-40N adatlap, https://www.g4.com.tw/userfiles/files/Datasheet/onrobot_3d_force_sensor_omd_20_se_40n.pdf

OnRobot Kft. https://onrobot.com/hu

6 tengelyű erőmérő szenzor fejlesztése https://www.slideshare.net/KnowledgeToMoney/optoforce-6-tengely-ermr-szenzor-fejlesztse

IGLESIAS, José. A force control based strategy for extrinsic in-hand object manipulation through prehensile-pushing primitives. 69.

COSTANZO, Marco, Giuseppe DE MARIA, Ciro NATALE a Salvatore PIROZZI. Design and Calibration of a Force/Tactile Sensor for Dexterous Manipulation. Sensors 2019

RobotIQ 2F-85 gripper, https://robotiq.com/products/2f85-140-adaptive-robot-gripper

FERRAGUTI, Federica, Andrea PERTOSA, Cristian SECCHI, Cesare FANTUZZI a Marcello BONFE. A Methodology for Comparative Analysis of Collaborative Robots for Industry 4.0. 2019 Design, Automation & Test in Europe Conference & Exhibition. Florence, Italy: IEEE, 2019, s. 1070–1075

Published
2020-04-16
How to Cite
[1]
NAGY, A.T. and PANITI, I. 2020. Univerzális mechanikus megfogó vizsgálata optikai elven működő erőmérő használatával. Nemzetközi Gépészeti Konferencia – OGÉT. 28, (Apr. 2020), 333-337.
Section
F. szekció -Mechatronika, finommechanika és automatizálás