Potenciális COVID-19 fertőzés automatikus felismerésé hagyományos véranalízis alapján
Automatic detection of potential COVID-19 infection based on conventional blood analysis
Abstract
To control the spread of the COVID-19 it is very important to identify those who have been already infected by this new type of virus. The rRT-PCR (reverse transcription polymerase chain reaction) testing is the golden standard for COVID-19 detection, but it is time consuming, laborious manual process and it is very short in supply. To reduce the number of tests, in this article we will present a possible solution for COVID-19 preliminary patient filtering based on regular blood tests, using artificial intelligence (AI) models. The most appropriate AI model will be selected using our auto-adaptive AI platform, AutomaticAI. The hyperparameters of the selected algorithm will also be adjusted automatically by this platform to match the context of the problem.
Kivonat
A COVID-19 terjedésének megfékezése érdekében nagyon fontos azonosítani azokat a személyeket, akiket már megfertőzött ezen új típusú vírus. Az rRT-PCR (reverse transcription polymerase chain reaction) teszt a COVID-19 detektálásának leghatékonyabb eszköze, ám időigényes, fárasztó kézi folyamat, és nagyon szűk a készlet belőle. A tesztek számának csökkentése érdekében, ebben a cikkben a COVID-19 előzetes betegszűrésének lehetséges megoldását mutatjuk be hagyományos vérvizsgálatok alapján, mesterséges intelligencia (AI) modellek felhasználásával. A leghatékonyabb AI-modellt automatikusan alkalmazkodó AI-platformunk, az AutomaticAI segítségével választjuk ki. A kiválasztott algoritmus hiperparamétereit platformunk képes automatikusan beállítani, ezáltal megfelelve a probléma kontextusának.
References
Wang et al. Detection of sars-cov-2 in different types of clinical specimens, JAMA, 2020.
Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, Chen H, Mubareka S, Gubbay JB, Chan WCW. Diagnosing COVID-19: The Disease and Tools for Detection, ACS Nano, 9th of April, 2020
Wu Yi-Chia, Chen Ching-Sunga, Chan Yu-Jiuna The outbreak of COVID-19, Journal of the Chinese Medical Association, March 2020, Volume 83, Issue 3, p. 217-220
Ying Liu, Albert A Gayle, Annelies Wilder-Smith, Joacim Rocklov, The reproductive number of COVID-19 is higher compared to SARS coronavirus, Journal of Travel Medicine, March 2020, Volume 27, Issue 2
Barstugan Mucahid, Ozkaya Umut and Ozturk Saban, Coronavirus (COVID-19) Classification using CT Images by Machine Learning Methods, arXiv, March, 2020
Barstugan Mucahid, Ozkaya Umut and Ozturk Saban, Classification of Coronavirus Images using Shrunken Features, arXiv, April, 2020
S.U.K. Bukhari, The diagnostic evaluation of Convolutional Neural Network (CNN) for the assessment of chest X-ray of patients infected, medRxiv, 26th of March, 2020
Linda Wang and Alexander Wong, COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray Images, arXiv, April, 2020
Ali Narin, Ceren Kaya and Ziynet Pamuk, Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images and Deep Convolutional Neural Networks, arXiv, March, 2020
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens and Zbigniew Wojna, Rethinking the Inception Architecture for Computer Vision, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016
Kaggle, 2020, Einstein Data4u, accessed 22th of April, 2020, https://www.kaggle.com/einsteindata4u/covid19/version/4
Adankon Mathias M. and Cheriet Mohamed, Support Vector Machine, Springer US, 2009
Guillaume Thibault, Bernard Fertil, Claire Navarro, Sandrine Pereira, Pierre Cau, Nicolas Levy, Jean Sequeira and Jean-Luc Mari, Texture indexes and gray level size zone matrix. Application to cell nuclei classification, 10th International Conference on Pattern Recognition and Information Processing, 2009
Czako Zoltan, AutomaticAI - Platform for Automatic Evaluation, Optimization and Selection of Artificial Intelligence Algorithms, Dissertation, Technical University of Cluj-Napoca, 2019